Metamath Proof Explorer


Theorem constrcon

Description: Contradiction of constuctibility: If a complex number A has minimal polynomial F over QQ of a degree that is not a power of 2 , then A is not constructible. (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses constrcon.d D = deg 1 fld 𝑠
constrcon.m M = fld minPoly
constrcon.a φ A
constrcon.f φ F = M A
constrcon.1 φ D F 0
constrcon.2 φ n 0 D F 2 n
Assertion constrcon φ ¬ A Constr

Proof

Step Hyp Ref Expression
1 constrcon.d D = deg 1 fld 𝑠
2 constrcon.m M = fld minPoly
3 constrcon.a φ A
4 constrcon.f φ F = M A
5 constrcon.1 φ D F 0
6 constrcon.2 φ n 0 D F 2 n
7 6 neneqd φ n 0 ¬ D F = 2 n
8 eqid fld 𝑠 = fld 𝑠
9 eqid fld 𝑠 fld fldGen A = fld 𝑠 fld fldGen A
10 eqid deg 1 fld = deg 1 fld
11 cnfldfld fld Field
12 11 a1i φ fld Field
13 cndrng fld DivRing
14 qsubdrg SubRing fld fld 𝑠 DivRing
15 14 simpli SubRing fld
16 8 qdrng fld 𝑠 DivRing
17 issdrg SubDRing fld fld DivRing SubRing fld fld 𝑠 DivRing
18 13 15 16 17 mpbir3an SubDRing fld
19 18 a1i φ SubDRing fld
20 cnfldbas = Base fld
21 eqidd φ D = D
22 21 4 fveq12d φ D F = D M A
23 22 5 eqeltrrd φ D M A 0
24 20 2 1 12 19 3 23 minplyelirng φ A fld IntgRing
25 8 9 10 2 12 19 24 algextdeg φ fld 𝑠 fld fldGen A .:. fld 𝑠 = deg 1 fld M A
26 eqid Poly 1 fld 𝑠 = Poly 1 fld 𝑠
27 eqid Base Poly 1 fld 𝑠 = Base Poly 1 fld 𝑠
28 eqid fld evalSub 1 = fld evalSub 1
29 eqid 0 fld = 0 fld
30 eqid q dom fld evalSub 1 | fld evalSub 1 q A = 0 fld = q dom fld evalSub 1 | fld evalSub 1 q A = 0 fld
31 eqid RSpan Poly 1 fld 𝑠 = RSpan Poly 1 fld 𝑠
32 eqid idlGen 1p fld 𝑠 = idlGen 1p fld 𝑠
33 28 26 20 12 19 3 29 30 31 32 2 minplycl φ M A Base Poly 1 fld 𝑠
34 15 a1i φ SubRing fld
35 8 10 26 27 33 34 ressdeg1 φ deg 1 fld M A = deg 1 fld 𝑠 M A
36 1 21 eqtr3id φ deg 1 fld 𝑠 = D
37 4 eqcomd φ M A = F
38 36 37 fveq12d φ deg 1 fld 𝑠 M A = D F
39 25 35 38 3eqtrd φ fld 𝑠 fld fldGen A .:. fld 𝑠 = D F
40 39 eqeq1d φ fld 𝑠 fld fldGen A .:. fld 𝑠 = 2 n D F = 2 n
41 40 adantr φ n 0 fld 𝑠 fld fldGen A .:. fld 𝑠 = 2 n D F = 2 n
42 7 41 mtbird φ n 0 ¬ fld 𝑠 fld fldGen A .:. fld 𝑠 = 2 n
43 42 nrexdv φ ¬ n 0 fld 𝑠 fld fldGen A .:. fld 𝑠 = 2 n
44 eqid fld fldGen A = fld fldGen A
45 simpr φ A Constr A Constr
46 8 9 44 45 constrext2chn φ A Constr n 0 fld 𝑠 fld fldGen A .:. fld 𝑠 = 2 n
47 43 46 mtand φ ¬ A Constr