| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrcon.d |
|
| 2 |
|
constrcon.m |
|
| 3 |
|
constrcon.a |
|
| 4 |
|
constrcon.f |
|
| 5 |
|
constrcon.1 |
|
| 6 |
|
constrcon.2 |
|
| 7 |
6
|
neneqd |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
|
cnfldfld |
|
| 12 |
11
|
a1i |
|
| 13 |
|
cndrng |
|
| 14 |
|
qsubdrg |
|
| 15 |
14
|
simpli |
|
| 16 |
8
|
qdrng |
|
| 17 |
|
issdrg |
|
| 18 |
13 15 16 17
|
mpbir3an |
|
| 19 |
18
|
a1i |
|
| 20 |
|
cnfldbas |
|
| 21 |
|
eqidd |
|
| 22 |
21 4
|
fveq12d |
|
| 23 |
22 5
|
eqeltrrd |
|
| 24 |
20 2 1 12 19 3 23
|
minplyelirng |
|
| 25 |
8 9 10 2 12 19 24
|
algextdeg |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
28 26 20 12 19 3 29 30 31 32 2
|
minplycl |
|
| 34 |
15
|
a1i |
|
| 35 |
8 10 26 27 33 34
|
ressdeg1 |
|
| 36 |
1 21
|
eqtr3id |
|
| 37 |
4
|
eqcomd |
|
| 38 |
36 37
|
fveq12d |
|
| 39 |
25 35 38
|
3eqtrd |
|
| 40 |
39
|
eqeq1d |
|
| 41 |
40
|
adantr |
|
| 42 |
7 41
|
mtbird |
|
| 43 |
42
|
nrexdv |
|
| 44 |
|
eqid |
|
| 45 |
|
simpr |
|
| 46 |
8 9 44 45
|
constrext2chn |
|
| 47 |
43 46
|
mtand |
|