| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|
| 2 |
|
constrextdg2.1 |
|
| 3 |
|
constrextdg2.2 |
|
| 4 |
|
constrextdg2.l |
|
| 5 |
|
constrextdg2.n |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
sseq1d |
|
| 8 |
7
|
anbi2d |
|
| 9 |
8
|
rexbidv |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
sseq1d |
|
| 12 |
11
|
anbi2d |
|
| 13 |
12
|
rexbidv |
|
| 14 |
|
fveq1 |
|
| 15 |
14
|
eqeq1d |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
sseq2d |
|
| 18 |
15 17
|
anbi12d |
|
| 19 |
18
|
cbvrexvw |
|
| 20 |
13 19
|
bitrdi |
|
| 21 |
|
fveq2 |
|
| 22 |
21
|
sseq1d |
|
| 23 |
22
|
anbi2d |
|
| 24 |
23
|
rexbidv |
|
| 25 |
|
fveq2 |
|
| 26 |
25
|
sseq1d |
|
| 27 |
26
|
anbi2d |
|
| 28 |
27
|
rexbidv |
|
| 29 |
|
fveq1 |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
|
fveq2 |
|
| 32 |
31
|
sseq2d |
|
| 33 |
30 32
|
anbi12d |
|
| 34 |
|
cndrng |
|
| 35 |
|
qsubdrg |
|
| 36 |
35
|
simpli |
|
| 37 |
35
|
simpri |
|
| 38 |
|
issdrg |
|
| 39 |
34 36 37 38
|
mpbir3an |
|
| 40 |
39
|
a1i |
|
| 41 |
40
|
s1chn |
|
| 42 |
|
s1fv |
|
| 43 |
40 42
|
syl |
|
| 44 |
|
0z |
|
| 45 |
|
1z |
|
| 46 |
|
prssi |
|
| 47 |
44 45 46
|
mp2an |
|
| 48 |
|
zssq |
|
| 49 |
47 48
|
sstri |
|
| 50 |
1
|
constr0 |
|
| 51 |
|
lsws1 |
|
| 52 |
39 51
|
ax-mp |
|
| 53 |
49 50 52
|
3sstr4i |
|
| 54 |
43 53
|
jctir |
|
| 55 |
33 41 54
|
rspcedvdw |
|
| 56 |
55
|
mptru |
|
| 57 |
|
simplll |
|
| 58 |
|
simpllr |
|
| 59 |
|
simplr |
|
| 60 |
|
simpr |
|
| 61 |
1 2 3 4 57 58 59 60
|
constrextdg2lem |
|
| 62 |
61
|
anasss |
|
| 63 |
62
|
rexlimdva2 |
|
| 64 |
9 20 24 28 56 63
|
finds |
|
| 65 |
5 64
|
syl |
|