Metamath Proof Explorer


Theorem csbfinxpg

Description: Distribute proper substitution through Cartesian exponentiation. (Contributed by ML, 25-Oct-2020)

Ref Expression
Assertion csbfinxpg A V A / x U ↑↑ N = A / x U ↑↑ A / x N

Proof

Step Hyp Ref Expression
1 df-finxp U ↑↑ N = y | N ω = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N
2 1 csbeq2i A / x U ↑↑ N = A / x y | N ω = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N
3 sbcan [˙A / x]˙ N ω = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N [˙A / x]˙ N ω [˙A / x]˙ = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N
4 sbcel1g A V [˙A / x]˙ N ω A / x N ω
5 sbceq2g A V [˙A / x]˙ = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N = A / x rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N
6 csbfv12 A / x rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N = A / x rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y A / x N
7 csbrdgg A V A / x rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y = rec A / x n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z A / x N y
8 csbmpo123 A V A / x n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z = n A / x ω , z A / x V A / x if n = 1 𝑜 z U if z V × U n 1 st z n z
9 csbconstg A V A / x ω = ω
10 csbconstg A V A / x V = V
11 csbif A / x if n = 1 𝑜 z U if z V × U n 1 st z n z = if [˙A / x]˙ n = 1 𝑜 z U A / x A / x if z V × U n 1 st z n z
12 sbcan [˙A / x]˙ n = 1 𝑜 z U [˙A / x]˙ n = 1 𝑜 [˙A / x]˙ z U
13 sbcg A V [˙A / x]˙ n = 1 𝑜 n = 1 𝑜
14 sbcel12 [˙A / x]˙ z U A / x z A / x U
15 csbconstg A V A / x z = z
16 15 eleq1d A V A / x z A / x U z A / x U
17 14 16 syl5bb A V [˙A / x]˙ z U z A / x U
18 13 17 anbi12d A V [˙A / x]˙ n = 1 𝑜 [˙A / x]˙ z U n = 1 𝑜 z A / x U
19 12 18 syl5bb A V [˙A / x]˙ n = 1 𝑜 z U n = 1 𝑜 z A / x U
20 csbconstg A V A / x =
21 csbif A / x if z V × U n 1 st z n z = if [˙A / x]˙ z V × U A / x n 1 st z A / x n z
22 sbcel12 [˙A / x]˙ z V × U A / x z A / x V × U
23 csbxp A / x V × U = A / x V × A / x U
24 10 xpeq1d A V A / x V × A / x U = V × A / x U
25 23 24 eqtrid A V A / x V × U = V × A / x U
26 15 25 eleq12d A V A / x z A / x V × U z V × A / x U
27 22 26 syl5bb A V [˙A / x]˙ z V × U z V × A / x U
28 csbconstg A V A / x n 1 st z = n 1 st z
29 csbconstg A V A / x n z = n z
30 27 28 29 ifbieq12d A V if [˙A / x]˙ z V × U A / x n 1 st z A / x n z = if z V × A / x U n 1 st z n z
31 21 30 eqtrid A V A / x if z V × U n 1 st z n z = if z V × A / x U n 1 st z n z
32 19 20 31 ifbieq12d A V if [˙A / x]˙ n = 1 𝑜 z U A / x A / x if z V × U n 1 st z n z = if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z
33 11 32 eqtrid A V A / x if n = 1 𝑜 z U if z V × U n 1 st z n z = if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z
34 9 10 33 mpoeq123dv A V n A / x ω , z A / x V A / x if n = 1 𝑜 z U if z V × U n 1 st z n z = n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z
35 8 34 eqtrd A V A / x n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z = n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z
36 csbopg A V A / x N y = A / x N A / x y
37 csbconstg A V A / x y = y
38 37 opeq2d A V A / x N A / x y = A / x N y
39 36 38 eqtrd A V A / x N y = A / x N y
40 rdgeq12 A / x n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z = n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y = A / x N y rec A / x n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z A / x N y = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y
41 35 39 40 syl2anc A V rec A / x n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z A / x N y = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y
42 7 41 eqtrd A V A / x rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y
43 42 fveq1d A V A / x rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y A / x N = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y A / x N
44 6 43 eqtrid A V A / x rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y A / x N
45 44 eqeq2d A V = A / x rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y A / x N
46 5 45 bitrd A V [˙A / x]˙ = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y A / x N
47 4 46 anbi12d A V [˙A / x]˙ N ω [˙A / x]˙ = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N A / x N ω = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y A / x N
48 3 47 syl5bb A V [˙A / x]˙ N ω = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N A / x N ω = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y A / x N
49 48 abbidv A V y | [˙A / x]˙ N ω = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N = y | A / x N ω = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y A / x N
50 csbab A / x y | N ω = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N = y | [˙A / x]˙ N ω = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N
51 df-finxp A / x U ↑↑ A / x N = y | A / x N ω = rec n ω , z V if n = 1 𝑜 z A / x U if z V × A / x U n 1 st z n z A / x N y A / x N
52 49 50 51 3eqtr4g A V A / x y | N ω = rec n ω , z V if n = 1 𝑜 z U if z V × U n 1 st z n z N y N = A / x U ↑↑ A / x N
53 2 52 eqtrid A V A / x U ↑↑ N = A / x U ↑↑ A / x N