Metamath Proof Explorer


Theorem csbren

Description: Cauchy-Schwarz-Bunjakovsky inequality for R^n. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Hypotheses csbrn.1 φAFin
csbrn.2 φkAB
csbrn.3 φkAC
Assertion csbren φkABC2kAB2kAC2

Proof

Step Hyp Ref Expression
1 csbrn.1 φAFin
2 csbrn.2 φkAB
3 csbrn.3 φkAC
4 2cn 2
5 2 3 remulcld φkABC
6 1 5 fsumrecl φkABC
7 6 recnd φkABC
8 sqmul 2kABC2kABC2=22kABC2
9 4 7 8 sylancr φ2kABC2=22kABC2
10 sq2 22=4
11 10 oveq1i 22kABC2=4kABC2
12 9 11 eqtrdi φ2kABC2=4kABC2
13 2 resqcld φkAB2
14 1 13 fsumrecl φkAB2
15 2re 2
16 remulcl 2kABC2kABC
17 15 6 16 sylancr φ2kABC
18 3 resqcld φkAC2
19 1 18 fsumrecl φkAC2
20 1 adantr φxAFin
21 13 adantlr φxkAB2
22 simplr φxkAx
23 22 resqcld φxkAx2
24 21 23 remulcld φxkAB2x2
25 remulcl 2BC2BC
26 15 5 25 sylancr φkA2BC
27 26 adantlr φxkA2BC
28 27 22 remulcld φxkA2BCx
29 24 28 readdcld φxkAB2x2+2BCx
30 18 adantlr φxkAC2
31 29 30 readdcld φxkAB2x2+2BCx+C2
32 2 adantlr φxkAB
33 32 22 remulcld φxkABx
34 3 adantlr φxkAC
35 33 34 readdcld φxkABx+C
36 35 sqge0d φxkA0Bx+C2
37 33 recnd φxkABx
38 34 recnd φxkAC
39 binom2 BxCBx+C2=Bx2+2BxC+C2
40 37 38 39 syl2anc φxkABx+C2=Bx2+2BxC+C2
41 32 recnd φxkAB
42 22 recnd φxkAx
43 41 42 sqmuld φxkABx2=B2x2
44 41 42 38 mul32d φxkABxC=BCx
45 44 oveq2d φxkA2BxC=2BCx
46 2cnd φxkA2
47 5 adantlr φxkABC
48 47 recnd φxkABC
49 46 48 42 mulassd φxkA2BCx=2BCx
50 45 49 eqtr4d φxkA2BxC=2BCx
51 43 50 oveq12d φxkABx2+2BxC=B2x2+2BCx
52 51 oveq1d φxkABx2+2BxC+C2=B2x2+2BCx+C2
53 40 52 eqtrd φxkABx+C2=B2x2+2BCx+C2
54 36 53 breqtrd φxkA0B2x2+2BCx+C2
55 20 31 54 fsumge0 φx0kAB2x2+2BCx+C2
56 24 recnd φxkAB2x2
57 28 recnd φxkA2BCx
58 56 57 addcld φxkAB2x2+2BCx
59 30 recnd φxkAC2
60 20 58 59 fsumadd φxkAB2x2+2BCx+C2=kAB2x2+2BCx+kAC2
61 20 56 57 fsumadd φxkAB2x2+2BCx=kAB2x2+kA2BCx
62 simpr φxx
63 62 recnd φxx
64 63 sqcld φxx2
65 21 recnd φxkAB2
66 20 64 65 fsummulc1 φxkAB2x2=kAB2x2
67 2cnd φx2
68 20 67 48 fsummulc2 φx2kABC=kA2BC
69 68 oveq1d φx2kABCx=kA2BCx
70 26 recnd φkA2BC
71 70 adantlr φxkA2BC
72 20 63 71 fsummulc1 φxkA2BCx=kA2BCx
73 69 72 eqtrd φx2kABCx=kA2BCx
74 66 73 oveq12d φxkAB2x2+2kABCx=kAB2x2+kA2BCx
75 61 74 eqtr4d φxkAB2x2+2BCx=kAB2x2+2kABCx
76 75 oveq1d φxkAB2x2+2BCx+kAC2=kAB2x2+2kABCx+kAC2
77 60 76 eqtrd φxkAB2x2+2BCx+C2=kAB2x2+2kABCx+kAC2
78 55 77 breqtrd φx0kAB2x2+2kABCx+kAC2
79 14 17 19 78 discr φ2kABC24kAB2kAC20
80 17 resqcld φ2kABC2
81 4re 4
82 14 19 remulcld φkAB2kAC2
83 remulcl 4kAB2kAC24kAB2kAC2
84 81 82 83 sylancr φ4kAB2kAC2
85 80 84 suble0d φ2kABC24kAB2kAC202kABC24kAB2kAC2
86 79 85 mpbid φ2kABC24kAB2kAC2
87 12 86 eqbrtrrd φ4kABC24kAB2kAC2
88 6 resqcld φkABC2
89 81 a1i φ4
90 4pos 0<4
91 90 a1i φ0<4
92 lemul2 kABC2kAB2kAC240<4kABC2kAB2kAC24kABC24kAB2kAC2
93 88 82 89 91 92 syl112anc φkABC2kAB2kAC24kABC24kAB2kAC2
94 87 93 mpbird φkABC2kAB2kAC2