Metamath Proof Explorer


Theorem cutlt

Description: Eliminating all elements below a given element of a cut does not affect the cut. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cutlt.1 φLsR
cutlt.2 φA=L|sR
cutlt.3 φXL
Assertion cutlt φA=XyL|X<sy|sR

Proof

Step Hyp Ref Expression
1 cutlt.1 φLsR
2 cutlt.2 φA=L|sR
3 cutlt.3 φXL
4 ssltss1 LsRLNo
5 1 4 syl φLNo
6 5 3 sseldd φXNo
7 snelpwi XNoX𝒫No
8 6 7 syl φX𝒫No
9 ssltex1 LsRLV
10 rabexg LVyL|X<syV
11 1 9 10 3syl φyL|X<syV
12 ssrab2 yL|X<syL
13 12 5 sstrid φyL|X<syNo
14 11 13 elpwd φyL|X<sy𝒫No
15 pwuncl X𝒫NoyL|X<sy𝒫NoXyL|X<sy𝒫No
16 8 14 15 syl2anc φXyL|X<sy𝒫No
17 ssltex2 LsRRV
18 1 17 syl φRV
19 ssltss2 LsRRNo
20 1 19 syl φRNo
21 18 20 elpwd φR𝒫No
22 snidg XLXX
23 elun1 XXXXyL|X<sy
24 3 22 23 3syl φXXyL|X<sy
25 24 adantr φaLXXyL|X<sy
26 breq2 b=XasbasX
27 26 rspcev XXyL|X<syasXbXyL|X<syasb
28 25 27 sylan φaLasXbXyL|X<syasb
29 28 ex φaLasXbXyL|X<syasb
30 6 adantr φaLXNo
31 5 sselda φaLaNo
32 sltnle XNoaNoX<sa¬asX
33 30 31 32 syl2anc φaLX<sa¬asX
34 breq2 y=aX<syX<sa
35 34 elrab ayL|X<syaLX<sa
36 elun2 ayL|X<syaXyL|X<sy
37 35 36 sylbir aLX<saaXyL|X<sy
38 slerflex aNoasa
39 31 38 syl φaLasa
40 39 adantrr φaLX<saasa
41 breq2 b=aasbasa
42 41 rspcev aXyL|X<syasabXyL|X<syasb
43 37 40 42 syl2an2 φaLX<sabXyL|X<syasb
44 43 expr φaLX<sabXyL|X<syasb
45 33 44 sylbird φaL¬asXbXyL|X<syasb
46 29 45 pm2.61d φaLbXyL|X<syasb
47 46 ralrimiva φaLbXyL|X<syasb
48 ssidd φRR
49 20 48 coiniss φaRbRbsa
50 3 snssd φXL
51 12 a1i φyL|X<syL
52 50 51 unssd φXyL|X<syL
53 5 52 cofss φaXyL|X<sybLasb
54 1 16 21 47 49 53 49 cofcut2d φL|sR=XyL|X<sy|sR
55 2 54 eqtrd φA=XyL|X<sy|sR