Metamath Proof Explorer


Theorem cvmscbv

Description: Change bound variables in the set of even coverings. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypothesis iscvm.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
Assertion cvmscbv S = a J b 𝒫 C | b = F -1 a c b d b c c d = F c C 𝑡 c Homeo J 𝑡 a

Proof

Step Hyp Ref Expression
1 iscvm.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 unieq s = b s = b
3 2 eqeq1d s = b s = F -1 k b = F -1 k
4 ineq2 v = d u v = u d
5 4 eqeq1d v = d u v = u d =
6 5 cbvralvw v s u u v = d s u u d =
7 sneq u = c u = c
8 7 difeq2d u = c s u = s c
9 ineq1 u = c u d = c d
10 9 eqeq1d u = c u d = c d =
11 8 10 raleqbidv u = c d s u u d = d s c c d =
12 6 11 syl5bb u = c v s u u v = d s c c d =
13 reseq2 u = c F u = F c
14 oveq2 u = c C 𝑡 u = C 𝑡 c
15 14 oveq1d u = c C 𝑡 u Homeo J 𝑡 k = C 𝑡 c Homeo J 𝑡 k
16 13 15 eleq12d u = c F u C 𝑡 u Homeo J 𝑡 k F c C 𝑡 c Homeo J 𝑡 k
17 12 16 anbi12d u = c v s u u v = F u C 𝑡 u Homeo J 𝑡 k d s c c d = F c C 𝑡 c Homeo J 𝑡 k
18 17 cbvralvw u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k c s d s c c d = F c C 𝑡 c Homeo J 𝑡 k
19 difeq1 s = b s c = b c
20 19 raleqdv s = b d s c c d = d b c c d =
21 20 anbi1d s = b d s c c d = F c C 𝑡 c Homeo J 𝑡 k d b c c d = F c C 𝑡 c Homeo J 𝑡 k
22 21 raleqbi1dv s = b c s d s c c d = F c C 𝑡 c Homeo J 𝑡 k c b d b c c d = F c C 𝑡 c Homeo J 𝑡 k
23 18 22 syl5bb s = b u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k c b d b c c d = F c C 𝑡 c Homeo J 𝑡 k
24 3 23 anbi12d s = b s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k b = F -1 k c b d b c c d = F c C 𝑡 c Homeo J 𝑡 k
25 24 cbvrabv s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = b 𝒫 C | b = F -1 k c b d b c c d = F c C 𝑡 c Homeo J 𝑡 k
26 imaeq2 k = a F -1 k = F -1 a
27 26 eqeq2d k = a b = F -1 k b = F -1 a
28 oveq2 k = a J 𝑡 k = J 𝑡 a
29 28 oveq2d k = a C 𝑡 c Homeo J 𝑡 k = C 𝑡 c Homeo J 𝑡 a
30 29 eleq2d k = a F c C 𝑡 c Homeo J 𝑡 k F c C 𝑡 c Homeo J 𝑡 a
31 30 anbi2d k = a d b c c d = F c C 𝑡 c Homeo J 𝑡 k d b c c d = F c C 𝑡 c Homeo J 𝑡 a
32 31 ralbidv k = a c b d b c c d = F c C 𝑡 c Homeo J 𝑡 k c b d b c c d = F c C 𝑡 c Homeo J 𝑡 a
33 27 32 anbi12d k = a b = F -1 k c b d b c c d = F c C 𝑡 c Homeo J 𝑡 k b = F -1 a c b d b c c d = F c C 𝑡 c Homeo J 𝑡 a
34 33 rabbidv k = a b 𝒫 C | b = F -1 k c b d b c c d = F c C 𝑡 c Homeo J 𝑡 k = b 𝒫 C | b = F -1 a c b d b c c d = F c C 𝑡 c Homeo J 𝑡 a
35 25 34 syl5eq k = a s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = b 𝒫 C | b = F -1 a c b d b c c d = F c C 𝑡 c Homeo J 𝑡 a
36 35 cbvmptv k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = a J b 𝒫 C | b = F -1 a c b d b c c d = F c C 𝑡 c Homeo J 𝑡 a
37 1 36 eqtri S = a J b 𝒫 C | b = F -1 a c b d b c c d = F c C 𝑡 c Homeo J 𝑡 a