Metamath Proof Explorer


Theorem cvmscbv

Description: Change bound variables in the set of even coverings. (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypothesis iscvm.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
Assertion cvmscbv S=aJb𝒫C|b=F-1acbdbccd=FcC𝑡cHomeoJ𝑡a

Proof

Step Hyp Ref Expression
1 iscvm.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 unieq s=bs=b
3 2 eqeq1d s=bs=F-1kb=F-1k
4 ineq2 v=duv=ud
5 4 eqeq1d v=duv=ud=
6 5 cbvralvw vsuuv=dsuud=
7 sneq u=cu=c
8 7 difeq2d u=csu=sc
9 ineq1 u=cud=cd
10 9 eqeq1d u=cud=cd=
11 8 10 raleqbidv u=cdsuud=dsccd=
12 6 11 bitrid u=cvsuuv=dsccd=
13 reseq2 u=cFu=Fc
14 oveq2 u=cC𝑡u=C𝑡c
15 14 oveq1d u=cC𝑡uHomeoJ𝑡k=C𝑡cHomeoJ𝑡k
16 13 15 eleq12d u=cFuC𝑡uHomeoJ𝑡kFcC𝑡cHomeoJ𝑡k
17 12 16 anbi12d u=cvsuuv=FuC𝑡uHomeoJ𝑡kdsccd=FcC𝑡cHomeoJ𝑡k
18 17 cbvralvw usvsuuv=FuC𝑡uHomeoJ𝑡kcsdsccd=FcC𝑡cHomeoJ𝑡k
19 difeq1 s=bsc=bc
20 19 raleqdv s=bdsccd=dbccd=
21 20 anbi1d s=bdsccd=FcC𝑡cHomeoJ𝑡kdbccd=FcC𝑡cHomeoJ𝑡k
22 21 raleqbi1dv s=bcsdsccd=FcC𝑡cHomeoJ𝑡kcbdbccd=FcC𝑡cHomeoJ𝑡k
23 18 22 bitrid s=busvsuuv=FuC𝑡uHomeoJ𝑡kcbdbccd=FcC𝑡cHomeoJ𝑡k
24 3 23 anbi12d s=bs=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡kb=F-1kcbdbccd=FcC𝑡cHomeoJ𝑡k
25 24 cbvrabv s𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=b𝒫C|b=F-1kcbdbccd=FcC𝑡cHomeoJ𝑡k
26 imaeq2 k=aF-1k=F-1a
27 26 eqeq2d k=ab=F-1kb=F-1a
28 oveq2 k=aJ𝑡k=J𝑡a
29 28 oveq2d k=aC𝑡cHomeoJ𝑡k=C𝑡cHomeoJ𝑡a
30 29 eleq2d k=aFcC𝑡cHomeoJ𝑡kFcC𝑡cHomeoJ𝑡a
31 30 anbi2d k=adbccd=FcC𝑡cHomeoJ𝑡kdbccd=FcC𝑡cHomeoJ𝑡a
32 31 ralbidv k=acbdbccd=FcC𝑡cHomeoJ𝑡kcbdbccd=FcC𝑡cHomeoJ𝑡a
33 27 32 anbi12d k=ab=F-1kcbdbccd=FcC𝑡cHomeoJ𝑡kb=F-1acbdbccd=FcC𝑡cHomeoJ𝑡a
34 33 rabbidv k=ab𝒫C|b=F-1kcbdbccd=FcC𝑡cHomeoJ𝑡k=b𝒫C|b=F-1acbdbccd=FcC𝑡cHomeoJ𝑡a
35 25 34 eqtrid k=as𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=b𝒫C|b=F-1acbdbccd=FcC𝑡cHomeoJ𝑡a
36 35 cbvmptv kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=aJb𝒫C|b=F-1acbdbccd=FcC𝑡cHomeoJ𝑡a
37 1 36 eqtri S=aJb𝒫C|b=F-1acbdbccd=FcC𝑡cHomeoJ𝑡a