Metamath Proof Explorer


Theorem dfac14lem

Description: Lemma for dfac14 . By equipping S u. { P } for some P e/ S with the particular point topology, we can show that P is in the closure of S ; hence the sequence P ( x ) is in the product of the closures, and we can utilize this instance of ptcls to extract an element of the closure of X_ k e. I S . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses dfac14lem.i φIV
dfac14lem.s φxISW
dfac14lem.0 φxIS
dfac14lem.p P=𝒫S
dfac14lem.r R=y𝒫SP|Pyy=SP
dfac14lem.j J=𝑡xIR
dfac14lem.c φclsJxIS=xIclsRS
Assertion dfac14lem φxIS

Proof

Step Hyp Ref Expression
1 dfac14lem.i φIV
2 dfac14lem.s φxISW
3 dfac14lem.0 φxIS
4 dfac14lem.p P=𝒫S
5 dfac14lem.r R=y𝒫SP|Pyy=SP
6 dfac14lem.j J=𝑡xIR
7 dfac14lem.c φclsJxIS=xIclsRS
8 eleq2w y=zPyPz
9 eqeq1 y=zy=SPz=SP
10 8 9 imbi12d y=zPyy=SPPzz=SP
11 10 5 elrab2 zRz𝒫SPPzz=SP
12 3 adantr φxIz𝒫SPS
13 ineq1 z=SPzS=SPS
14 ssun1 SSP
15 sseqin2 SSPSPS=S
16 14 15 mpbi SPS=S
17 13 16 eqtrdi z=SPzS=S
18 17 neeq1d z=SPzSS
19 12 18 syl5ibrcom φxIz𝒫SPz=SPzS
20 19 imim2d φxIz𝒫SPPzz=SPPzzS
21 20 expimpd φxIz𝒫SPPzz=SPPzzS
22 11 21 biimtrid φxIzRPzzS
23 22 ralrimiv φxIzRPzzS
24 snex PV
25 unexg SWPVSPV
26 2 24 25 sylancl φxISPV
27 ssun2 PSP
28 uniexg SWSV
29 pwexg SV𝒫SV
30 2 28 29 3syl φxI𝒫SV
31 4 30 eqeltrid φxIPV
32 snidg PVPP
33 31 32 syl φxIPP
34 27 33 sselid φxIPSP
35 epttop SPVPSPy𝒫SP|Pyy=SPTopOnSP
36 26 34 35 syl2anc φxIy𝒫SP|Pyy=SPTopOnSP
37 5 36 eqeltrid φxIRTopOnSP
38 topontop RTopOnSPRTop
39 37 38 syl φxIRTop
40 toponuni RTopOnSPSP=R
41 37 40 syl φxISP=R
42 14 41 sseqtrid φxISR
43 34 41 eleqtrd φxIPR
44 eqid R=R
45 44 elcls RTopSRPRPclsRSzRPzzS
46 39 42 43 45 syl3anc φxIPclsRSzRPzzS
47 23 46 mpbird φxIPclsRS
48 47 ralrimiva φxIPclsRS
49 mptelixpg IVxIPxIclsRSxIPclsRS
50 1 49 syl φxIPxIclsRSxIPclsRS
51 48 50 mpbird φxIPxIclsRS
52 51 ne0d φxIclsRS
53 37 ralrimiva φxIRTopOnSP
54 6 pttopon IVxIRTopOnSPJTopOnxISP
55 1 53 54 syl2anc φJTopOnxISP
56 topontop JTopOnxISPJTop
57 cls0 JTopclsJ=
58 55 56 57 3syl φclsJ=
59 52 7 58 3netr4d φclsJxISclsJ
60 fveq2 xIS=clsJxIS=clsJ
61 60 necon3i clsJxISclsJxIS
62 59 61 syl φxIS