Description: Lemma for dfac14 . By equipping S u. { P } for some P e/ S with the particular point topology, we can show that P is in the closure of S ; hence the sequence P ( x ) is in the product of the closures, and we can utilize this instance of ptcls to extract an element of the closure of X_ k e. I S . (Contributed by Mario Carneiro, 2-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfac14lem.i | |
|
dfac14lem.s | |
||
dfac14lem.0 | |
||
dfac14lem.p | |
||
dfac14lem.r | |
||
dfac14lem.j | |
||
dfac14lem.c | |
||
Assertion | dfac14lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfac14lem.i | |
|
2 | dfac14lem.s | |
|
3 | dfac14lem.0 | |
|
4 | dfac14lem.p | |
|
5 | dfac14lem.r | |
|
6 | dfac14lem.j | |
|
7 | dfac14lem.c | |
|
8 | eleq2w | |
|
9 | eqeq1 | |
|
10 | 8 9 | imbi12d | |
11 | 10 5 | elrab2 | |
12 | 3 | adantr | |
13 | ineq1 | |
|
14 | ssun1 | |
|
15 | sseqin2 | |
|
16 | 14 15 | mpbi | |
17 | 13 16 | eqtrdi | |
18 | 17 | neeq1d | |
19 | 12 18 | syl5ibrcom | |
20 | 19 | imim2d | |
21 | 20 | expimpd | |
22 | 11 21 | biimtrid | |
23 | 22 | ralrimiv | |
24 | snex | |
|
25 | unexg | |
|
26 | 2 24 25 | sylancl | |
27 | ssun2 | |
|
28 | uniexg | |
|
29 | pwexg | |
|
30 | 2 28 29 | 3syl | |
31 | 4 30 | eqeltrid | |
32 | snidg | |
|
33 | 31 32 | syl | |
34 | 27 33 | sselid | |
35 | epttop | |
|
36 | 26 34 35 | syl2anc | |
37 | 5 36 | eqeltrid | |
38 | topontop | |
|
39 | 37 38 | syl | |
40 | toponuni | |
|
41 | 37 40 | syl | |
42 | 14 41 | sseqtrid | |
43 | 34 41 | eleqtrd | |
44 | eqid | |
|
45 | 44 | elcls | |
46 | 39 42 43 45 | syl3anc | |
47 | 23 46 | mpbird | |
48 | 47 | ralrimiva | |
49 | mptelixpg | |
|
50 | 1 49 | syl | |
51 | 48 50 | mpbird | |
52 | 51 | ne0d | |
53 | 37 | ralrimiva | |
54 | 6 | pttopon | |
55 | 1 53 54 | syl2anc | |
56 | topontop | |
|
57 | cls0 | |
|
58 | 55 56 57 | 3syl | |
59 | 52 7 58 | 3netr4d | |
60 | fveq2 | |
|
61 | 60 | necon3i | |
62 | 59 61 | syl | |