Metamath Proof Explorer


Theorem epttop

Description: The excluded point topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion epttop AVPAx𝒫A|Pxx=ATopOnA

Proof

Step Hyp Ref Expression
1 ssrab yx𝒫A|Pxx=Ay𝒫AxyPxx=A
2 eleq2 x=yPxPy
3 eqeq1 x=yx=Ay=A
4 2 3 imbi12d x=yPxx=APyy=A
5 simprl AVPAy𝒫AxyPxx=Ay𝒫A
6 sspwuni y𝒫AyA
7 5 6 sylib AVPAy𝒫AxyPxx=AyA
8 vuniex yV
9 8 elpw y𝒫AyA
10 7 9 sylibr AVPAy𝒫AxyPxx=Ay𝒫A
11 eluni2 PyxyPx
12 r19.29 xyPxx=AxyPxxyPxx=APx
13 simpr xyPxx=APxx=A
14 13 impr xyPxx=APxx=A
15 elssuni xyxy
16 15 adantr xyPxx=APxxy
17 14 16 eqsstrrd xyPxx=APxAy
18 17 rexlimiva xyPxx=APxAy
19 12 18 syl xyPxx=AxyPxAy
20 19 ex xyPxx=AxyPxAy
21 20 ad2antll AVPAy𝒫AxyPxx=AxyPxAy
22 11 21 biimtrid AVPAy𝒫AxyPxx=APyAy
23 22 7 jctild AVPAy𝒫AxyPxx=APyyAAy
24 eqss y=AyAAy
25 23 24 syl6ibr AVPAy𝒫AxyPxx=APyy=A
26 4 10 25 elrabd AVPAy𝒫AxyPxx=Ayx𝒫A|Pxx=A
27 26 ex AVPAy𝒫AxyPxx=Ayx𝒫A|Pxx=A
28 1 27 biimtrid AVPAyx𝒫A|Pxx=Ayx𝒫A|Pxx=A
29 28 alrimiv AVPAyyx𝒫A|Pxx=Ayx𝒫A|Pxx=A
30 inss1 yzy
31 simprll AVPAy𝒫APyy=Az𝒫APzz=Ay𝒫A
32 31 elpwid AVPAy𝒫APyy=Az𝒫APzz=AyA
33 30 32 sstrid AVPAy𝒫APyy=Az𝒫APzz=AyzA
34 vex yV
35 34 inex1 yzV
36 35 elpw yz𝒫AyzA
37 33 36 sylibr AVPAy𝒫APyy=Az𝒫APzz=Ayz𝒫A
38 elin PyzPyPz
39 simprlr AVPAy𝒫APyy=Az𝒫APzz=APyy=A
40 simprrr AVPAy𝒫APyy=Az𝒫APzz=APzz=A
41 39 40 anim12d AVPAy𝒫APyy=Az𝒫APzz=APyPzy=Az=A
42 ineq12 y=Az=Ayz=AA
43 inidm AA=A
44 42 43 eqtrdi y=Az=Ayz=A
45 41 44 syl6 AVPAy𝒫APyy=Az𝒫APzz=APyPzyz=A
46 38 45 biimtrid AVPAy𝒫APyy=Az𝒫APzz=APyzyz=A
47 37 46 jca AVPAy𝒫APyy=Az𝒫APzz=Ayz𝒫APyzyz=A
48 47 ex AVPAy𝒫APyy=Az𝒫APzz=Ayz𝒫APyzyz=A
49 eleq2 x=yPxPy
50 eqeq1 x=yx=Ay=A
51 49 50 imbi12d x=yPxx=APyy=A
52 51 elrab yx𝒫A|Pxx=Ay𝒫APyy=A
53 eleq2 x=zPxPz
54 eqeq1 x=zx=Az=A
55 53 54 imbi12d x=zPxx=APzz=A
56 55 elrab zx𝒫A|Pxx=Az𝒫APzz=A
57 52 56 anbi12i yx𝒫A|Pxx=Azx𝒫A|Pxx=Ay𝒫APyy=Az𝒫APzz=A
58 eleq2 x=yzPxPyz
59 eqeq1 x=yzx=Ayz=A
60 58 59 imbi12d x=yzPxx=APyzyz=A
61 60 elrab yzx𝒫A|Pxx=Ayz𝒫APyzyz=A
62 48 57 61 3imtr4g AVPAyx𝒫A|Pxx=Azx𝒫A|Pxx=Ayzx𝒫A|Pxx=A
63 62 ralrimivv AVPAyx𝒫A|Pxx=Azx𝒫A|Pxx=Ayzx𝒫A|Pxx=A
64 pwexg AV𝒫AV
65 64 adantr AVPA𝒫AV
66 rabexg 𝒫AVx𝒫A|Pxx=AV
67 65 66 syl AVPAx𝒫A|Pxx=AV
68 istopg x𝒫A|Pxx=AVx𝒫A|Pxx=ATopyyx𝒫A|Pxx=Ayx𝒫A|Pxx=Ayx𝒫A|Pxx=Azx𝒫A|Pxx=Ayzx𝒫A|Pxx=A
69 67 68 syl AVPAx𝒫A|Pxx=ATopyyx𝒫A|Pxx=Ayx𝒫A|Pxx=Ayx𝒫A|Pxx=Azx𝒫A|Pxx=Ayzx𝒫A|Pxx=A
70 29 63 69 mpbir2and AVPAx𝒫A|Pxx=ATop
71 eleq2 x=APxPA
72 eqeq1 x=Ax=AA=A
73 71 72 imbi12d x=APxx=APAA=A
74 pwidg AVA𝒫A
75 74 adantr AVPAA𝒫A
76 eqidd AVPAA=A
77 76 a1d AVPAPAA=A
78 73 75 77 elrabd AVPAAx𝒫A|Pxx=A
79 elssuni Ax𝒫A|Pxx=AAx𝒫A|Pxx=A
80 78 79 syl AVPAAx𝒫A|Pxx=A
81 ssrab2 x𝒫A|Pxx=A𝒫A
82 sspwuni x𝒫A|Pxx=A𝒫Ax𝒫A|Pxx=AA
83 81 82 mpbi x𝒫A|Pxx=AA
84 83 a1i AVPAx𝒫A|Pxx=AA
85 80 84 eqssd AVPAA=x𝒫A|Pxx=A
86 istopon x𝒫A|Pxx=ATopOnAx𝒫A|Pxx=ATopA=x𝒫A|Pxx=A
87 70 85 86 sylanbrc AVPAx𝒫A|Pxx=ATopOnA