Metamath Proof Explorer


Theorem dfceil2

Description: Alternative definition of the ceiling function using restricted iota. (Contributed by AV, 1-Dec-2018)

Ref Expression
Assertion dfceil2 .=xιy|xyy<x+1

Proof

Step Hyp Ref Expression
1 df-ceil .=xx
2 zre zz
3 lenegcon2 xzxzzx
4 peano2re xx+1
5 4 anim1ci xzzx+1
6 ltnegcon1 zx+1z<x+1x+1<z
7 5 6 syl xzz<x+1x+1<z
8 recn xx
9 1cnd x1
10 8 9 negdid xx+1=-x+-1
11 10 adantr xzx+1=-x+-1
12 11 breq1d xzx+1<z-x+-1<z
13 renegcl xx
14 13 adantr xzx
15 neg1rr 1
16 15 a1i xz1
17 simpr xzz
18 14 16 17 ltaddsubd xz-x+-1<zx<z-1
19 recn zz
20 1cnd z1
21 19 20 subnegd zz-1=z+1
22 21 adantl xzz-1=z+1
23 22 breq2d xzx<z-1x<z+1
24 18 23 bitrd xz-x+-1<zx<z+1
25 7 12 24 3bitrd xzz<x+1x<z+1
26 3 25 anbi12d xzxzz<x+1zxx<z+1
27 2 26 sylan2 xzxzz<x+1zxx<z+1
28 27 riotabidva xιz|xzz<x+1=ιz|zxx<z+1
29 28 negeqd xιz|xzz<x+1=ιz|zxx<z+1
30 zbtwnre x∃!yxyy<x+1
31 breq2 y=zxyxz
32 breq1 y=zy<x+1z<x+1
33 31 32 anbi12d y=zxyy<x+1xzz<x+1
34 33 zriotaneg ∃!yxyy<x+1ιy|xyy<x+1=ιz|xzz<x+1
35 30 34 syl xιy|xyy<x+1=ιz|xzz<x+1
36 flval xx=ιz|zxx<z+1
37 13 36 syl xx=ιz|zxx<z+1
38 37 negeqd xx=ιz|zxx<z+1
39 29 35 38 3eqtr4rd xx=ιy|xyy<x+1
40 39 mpteq2ia xx=xιy|xyy<x+1
41 1 40 eqtri .=xιy|xyy<x+1