Metamath Proof Explorer


Theorem dfringc2

Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020)

Ref Expression
Hypotheses dfringc2.c C = RingCat U
dfringc2.u φ U V
dfringc2.b φ B = U Ring
dfringc2.h φ H = RingHom B × B
dfringc2.o φ · ˙ = comp ExtStrCat U
Assertion dfringc2 φ C = Base ndx B Hom ndx H comp ndx · ˙

Proof

Step Hyp Ref Expression
1 dfringc2.c C = RingCat U
2 dfringc2.u φ U V
3 dfringc2.b φ B = U Ring
4 dfringc2.h φ H = RingHom B × B
5 dfringc2.o φ · ˙ = comp ExtStrCat U
6 1 2 3 4 ringcval φ C = ExtStrCat U cat H
7 eqid ExtStrCat U cat H = ExtStrCat U cat H
8 fvexd φ ExtStrCat U V
9 inex1g U V U Ring V
10 2 9 syl φ U Ring V
11 3 10 eqeltrd φ B V
12 3 4 rhmresfn φ H Fn B × B
13 7 8 11 12 rescval2 φ ExtStrCat U cat H = ExtStrCat U 𝑠 B sSet Hom ndx H
14 eqid ExtStrCat U = ExtStrCat U
15 eqidd φ x U , y U Base y Base x = x U , y U Base y Base x
16 eqid comp ExtStrCat U = comp ExtStrCat U
17 14 2 16 estrccofval φ comp ExtStrCat U = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
18 5 17 eqtrd φ · ˙ = v U × U , z U g Base z Base 2 nd v , f Base 2 nd v Base 1 st v g f
19 14 2 15 18 estrcval φ ExtStrCat U = Base ndx U Hom ndx x U , y U Base y Base x comp ndx · ˙
20 mpoexga U V U V x U , y U Base y Base x V
21 2 2 20 syl2anc φ x U , y U Base y Base x V
22 fvexd φ comp ExtStrCat U V
23 5 22 eqeltrd φ · ˙ V
24 rhmfn RingHom Fn Ring × Ring
25 fnfun RingHom Fn Ring × Ring Fun RingHom
26 24 25 mp1i φ Fun RingHom
27 sqxpexg B V B × B V
28 11 27 syl φ B × B V
29 resfunexg Fun RingHom B × B V RingHom B × B V
30 26 28 29 syl2anc φ RingHom B × B V
31 4 30 eqeltrd φ H V
32 inss1 U Ring U
33 3 32 eqsstrdi φ B U
34 19 2 21 23 31 33 estrres φ ExtStrCat U 𝑠 B sSet Hom ndx H = Base ndx B Hom ndx H comp ndx · ˙
35 6 13 34 3eqtrd φ C = Base ndx B Hom ndx H comp ndx · ˙