Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfringc2.c | |
|
dfringc2.u | |
||
dfringc2.b | |
||
dfringc2.h | |
||
dfringc2.o | |
||
Assertion | dfringc2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfringc2.c | |
|
2 | dfringc2.u | |
|
3 | dfringc2.b | |
|
4 | dfringc2.h | |
|
5 | dfringc2.o | |
|
6 | 1 2 3 4 | ringcval | |
7 | eqid | |
|
8 | fvexd | |
|
9 | inex1g | |
|
10 | 2 9 | syl | |
11 | 3 10 | eqeltrd | |
12 | 3 4 | rhmresfn | |
13 | 7 8 11 12 | rescval2 | |
14 | eqid | |
|
15 | eqidd | |
|
16 | eqid | |
|
17 | 14 2 16 | estrccofval | |
18 | 5 17 | eqtrd | |
19 | 14 2 15 18 | estrcval | |
20 | mpoexga | |
|
21 | 2 2 20 | syl2anc | |
22 | fvexd | |
|
23 | 5 22 | eqeltrd | |
24 | rhmfn | |
|
25 | fnfun | |
|
26 | 24 25 | mp1i | |
27 | sqxpexg | |
|
28 | 11 27 | syl | |
29 | resfunexg | |
|
30 | 26 28 29 | syl2anc | |
31 | 4 30 | eqeltrd | |
32 | inss1 | |
|
33 | 3 32 | eqsstrdi | |
34 | 19 2 21 23 31 33 | estrres | |
35 | 6 13 34 | 3eqtrd | |