Metamath Proof Explorer


Theorem dfringc2

Description: Alternate definition of the category of unital rings (in a universe). (Contributed by AV, 16-Mar-2020)

Ref Expression
Hypotheses dfringc2.c C=RingCatU
dfringc2.u φUV
dfringc2.b φB=URing
dfringc2.h φH=RingHomB×B
dfringc2.o φ·˙=compExtStrCatU
Assertion dfringc2 φC=BasendxBHomndxHcompndx·˙

Proof

Step Hyp Ref Expression
1 dfringc2.c C=RingCatU
2 dfringc2.u φUV
3 dfringc2.b φB=URing
4 dfringc2.h φH=RingHomB×B
5 dfringc2.o φ·˙=compExtStrCatU
6 1 2 3 4 ringcval φC=ExtStrCatUcatH
7 eqid ExtStrCatUcatH=ExtStrCatUcatH
8 fvexd φExtStrCatUV
9 inex1g UVURingV
10 2 9 syl φURingV
11 3 10 eqeltrd φBV
12 3 4 rhmresfn φHFnB×B
13 7 8 11 12 rescval2 φExtStrCatUcatH=ExtStrCatU𝑠BsSetHomndxH
14 eqid ExtStrCatU=ExtStrCatU
15 eqidd φxU,yUBaseyBasex=xU,yUBaseyBasex
16 eqid compExtStrCatU=compExtStrCatU
17 14 2 16 estrccofval φcompExtStrCatU=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
18 5 17 eqtrd φ·˙=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
19 14 2 15 18 estrcval φExtStrCatU=BasendxUHomndxxU,yUBaseyBasexcompndx·˙
20 mpoexga UVUVxU,yUBaseyBasexV
21 2 2 20 syl2anc φxU,yUBaseyBasexV
22 fvexd φcompExtStrCatUV
23 5 22 eqeltrd φ·˙V
24 rhmfn RingHomFnRing×Ring
25 fnfun RingHomFnRing×RingFunRingHom
26 24 25 mp1i φFunRingHom
27 sqxpexg BVB×BV
28 11 27 syl φB×BV
29 resfunexg FunRingHomB×BVRingHomB×BV
30 26 28 29 syl2anc φRingHomB×BV
31 4 30 eqeltrd φHV
32 inss1 URingU
33 3 32 eqsstrdi φBU
34 19 2 21 23 31 33 estrres φExtStrCatU𝑠BsSetHomndxH=BasendxBHomndxHcompndx·˙
35 6 13 34 3eqtrd φC=BasendxBHomndxHcompndx·˙