Metamath Proof Explorer


Theorem dgrlem

Description: Lemma for dgrcl and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypothesis dgrval.1 A=coeffF
Assertion dgrlem FPolySA:0S0nxA-10xn

Proof

Step Hyp Ref Expression
1 dgrval.1 A=coeffF
2 elply2 FPolySSn0aS00an+1=0F=zk=0nakzk
3 2 simprbi FPolySn0aS00an+1=0F=zk=0nakzk
4 simplrr FPolySn0aS00an+1=0F=zk=0nakzkaS00
5 simpll FPolySn0aS00an+1=0F=zk=0nakzkFPolyS
6 plybss FPolySS
7 5 6 syl FPolySn0aS00an+1=0F=zk=0nakzkS
8 0cnd FPolySn0aS00an+1=0F=zk=0nakzk0
9 8 snssd FPolySn0aS00an+1=0F=zk=0nakzk0
10 7 9 unssd FPolySn0aS00an+1=0F=zk=0nakzkS0
11 cnex V
12 ssexg S0VS0V
13 10 11 12 sylancl FPolySn0aS00an+1=0F=zk=0nakzkS0V
14 nn0ex 0V
15 elmapg S0V0VaS00a:0S0
16 13 14 15 sylancl FPolySn0aS00an+1=0F=zk=0nakzkaS00a:0S0
17 4 16 mpbid FPolySn0aS00an+1=0F=zk=0nakzka:0S0
18 simplrl FPolySn0aS00an+1=0F=zk=0nakzkn0
19 17 10 fssd FPolySn0aS00an+1=0F=zk=0nakzka:0
20 simprl FPolySn0aS00an+1=0F=zk=0nakzkan+1=0
21 simprr FPolySn0aS00an+1=0F=zk=0nakzkF=zk=0nakzk
22 5 18 19 20 21 coeeq FPolySn0aS00an+1=0F=zk=0nakzkcoeffF=a
23 1 22 eqtr2id FPolySn0aS00an+1=0F=zk=0nakzka=A
24 23 feq1d FPolySn0aS00an+1=0F=zk=0nakzka:0S0A:0S0
25 17 24 mpbid FPolySn0aS00an+1=0F=zk=0nakzkA:0S0
26 25 ex FPolySn0aS00an+1=0F=zk=0nakzkA:0S0
27 26 rexlimdvva FPolySn0aS00an+1=0F=zk=0nakzkA:0S0
28 3 27 mpd FPolySA:0S0
29 nn0ssz 0
30 ffn a:0aFn0
31 elpreima aFn0xa-10x0ax0
32 19 30 31 3syl FPolySn0aS00an+1=0F=zk=0nakzkxa-10x0ax0
33 32 biimpa FPolySn0aS00an+1=0F=zk=0nakzkxa-10x0ax0
34 eldifsni ax0ax0
35 33 34 simpl2im FPolySn0aS00an+1=0F=zk=0nakzkxa-10ax0
36 33 simpld FPolySn0aS00an+1=0F=zk=0nakzkxa-10x0
37 plyco0 n0a:0an+1=0x0ax0xn
38 18 19 37 syl2anc FPolySn0aS00an+1=0F=zk=0nakzkan+1=0x0ax0xn
39 20 38 mpbid FPolySn0aS00an+1=0F=zk=0nakzkx0ax0xn
40 39 r19.21bi FPolySn0aS00an+1=0F=zk=0nakzkx0ax0xn
41 36 40 syldan FPolySn0aS00an+1=0F=zk=0nakzkxa-10ax0xn
42 35 41 mpd FPolySn0aS00an+1=0F=zk=0nakzkxa-10xn
43 42 ralrimiva FPolySn0aS00an+1=0F=zk=0nakzkxa-10xn
44 23 cnveqd FPolySn0aS00an+1=0F=zk=0nakzka-1=A-1
45 44 imaeq1d FPolySn0aS00an+1=0F=zk=0nakzka-10=A-10
46 45 raleqdv FPolySn0aS00an+1=0F=zk=0nakzkxa-10xnxA-10xn
47 43 46 mpbid FPolySn0aS00an+1=0F=zk=0nakzkxA-10xn
48 47 ex FPolySn0aS00an+1=0F=zk=0nakzkxA-10xn
49 48 expr FPolySn0aS00an+1=0F=zk=0nakzkxA-10xn
50 49 rexlimdv FPolySn0aS00an+1=0F=zk=0nakzkxA-10xn
51 50 reximdva FPolySn0aS00an+1=0F=zk=0nakzkn0xA-10xn
52 3 51 mpd FPolySn0xA-10xn
53 ssrexv 0n0xA-10xnnxA-10xn
54 29 52 53 mpsyl FPolySnxA-10xn
55 28 54 jca FPolySA:0S0nxA-10xn