Description: Lemma for dgrcl and similar theorems. (Contributed by Mario Carneiro, 22-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dgrval.1 | |
|
Assertion | dgrlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dgrval.1 | |
|
2 | elply2 | |
|
3 | 2 | simprbi | |
4 | simplrr | |
|
5 | simpll | |
|
6 | plybss | |
|
7 | 5 6 | syl | |
8 | 0cnd | |
|
9 | 8 | snssd | |
10 | 7 9 | unssd | |
11 | cnex | |
|
12 | ssexg | |
|
13 | 10 11 12 | sylancl | |
14 | nn0ex | |
|
15 | elmapg | |
|
16 | 13 14 15 | sylancl | |
17 | 4 16 | mpbid | |
18 | simplrl | |
|
19 | 17 10 | fssd | |
20 | simprl | |
|
21 | simprr | |
|
22 | 5 18 19 20 21 | coeeq | |
23 | 1 22 | eqtr2id | |
24 | 23 | feq1d | |
25 | 17 24 | mpbid | |
26 | 25 | ex | |
27 | 26 | rexlimdvva | |
28 | 3 27 | mpd | |
29 | nn0ssz | |
|
30 | ffn | |
|
31 | elpreima | |
|
32 | 19 30 31 | 3syl | |
33 | 32 | biimpa | |
34 | eldifsni | |
|
35 | 33 34 | simpl2im | |
36 | 33 | simpld | |
37 | plyco0 | |
|
38 | 18 19 37 | syl2anc | |
39 | 20 38 | mpbid | |
40 | 39 | r19.21bi | |
41 | 36 40 | syldan | |
42 | 35 41 | mpd | |
43 | 42 | ralrimiva | |
44 | 23 | cnveqd | |
45 | 44 | imaeq1d | |
46 | 45 | raleqdv | |
47 | 43 46 | mpbid | |
48 | 47 | ex | |
49 | 48 | expr | |
50 | 49 | rexlimdv | |
51 | 50 | reximdva | |
52 | 3 51 | mpd | |
53 | ssrexv | |
|
54 | 29 52 53 | mpsyl | |
55 | 28 54 | jca | |