Description: The difference of two integers from a finite set of sequential nonnegative integers increased by the upper bound is also element of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 12-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | difelfznle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 | |
|
2 | nn0addcl | |
|
3 | 2 | nn0zd | |
4 | 3 | 3adant3 | |
5 | 1 4 | sylbi | |
6 | elfzelz | |
|
7 | zsubcl | |
|
8 | 5 6 7 | syl2anr | |
9 | 8 | 3adant3 | |
10 | 6 | zred | |
11 | 10 | adantr | |
12 | elfzel2 | |
|
13 | 12 | zred | |
14 | 13 | adantr | |
15 | nn0readdcl | |
|
16 | 15 | 3adant3 | |
17 | 1 16 | sylbi | |
18 | 17 | adantl | |
19 | elfzle2 | |
|
20 | elfzle1 | |
|
21 | nn0re | |
|
22 | nn0re | |
|
23 | 21 22 | anim12ci | |
24 | 23 | 3adant3 | |
25 | 1 24 | sylbi | |
26 | addge02 | |
|
27 | 25 26 | syl | |
28 | 20 27 | mpbid | |
29 | 19 28 | anim12i | |
30 | letr | |
|
31 | 30 | imp | |
32 | 11 14 18 29 31 | syl31anc | |
33 | 32 | 3adant3 | |
34 | zre | |
|
35 | 21 22 | anim12i | |
36 | 35 | 3adant3 | |
37 | 1 36 | sylbi | |
38 | readdcl | |
|
39 | 37 38 | syl | |
40 | 34 39 | anim12ci | |
41 | 6 40 | sylan | |
42 | 41 | 3adant3 | |
43 | subge0 | |
|
44 | 42 43 | syl | |
45 | 33 44 | mpbird | |
46 | elnn0z | |
|
47 | 9 45 46 | sylanbrc | |
48 | elfz3nn0 | |
|
49 | 48 | 3ad2ant1 | |
50 | elfzelz | |
|
51 | zre | |
|
52 | ltnle | |
|
53 | 52 | ancoms | |
54 | ltle | |
|
55 | 54 | ancoms | |
56 | 53 55 | sylbird | |
57 | 34 51 56 | syl2an | |
58 | 6 50 57 | syl2an | |
59 | 58 | 3impia | |
60 | 50 | zred | |
61 | 60 | adantl | |
62 | 61 11 14 | leadd1d | |
63 | 62 | 3adant3 | |
64 | 59 63 | mpbid | |
65 | 18 11 14 | lesubadd2d | |
66 | 65 | 3adant3 | |
67 | 64 66 | mpbird | |
68 | elfz2nn0 | |
|
69 | 47 49 67 68 | syl3anbrc | |