Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihatexv2.a | |
|
dihatexv2.h | |
||
dihatexv2.u | |
||
dihatexv2.v | |
||
dihatexv2.o | |
||
dihatexv2.n | |
||
dihatexv2.i | |
||
dihatexv2.k | |
||
Assertion | dihatexv2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihatexv2.a | |
|
2 | dihatexv2.h | |
|
3 | dihatexv2.u | |
|
4 | dihatexv2.v | |
|
5 | dihatexv2.o | |
|
6 | dihatexv2.n | |
|
7 | dihatexv2.i | |
|
8 | dihatexv2.k | |
|
9 | eqid | |
|
10 | 9 1 | atbase | |
11 | 10 | anim2i | |
12 | 8 | adantr | |
13 | eldifi | |
|
14 | 2 3 4 6 7 | dihlsprn | |
15 | 8 13 14 | syl2an | |
16 | 9 2 7 | dihcnvcl | |
17 | 12 15 16 | syl2anc | |
18 | eleq1a | |
|
19 | 17 18 | syl | |
20 | 19 | rexlimdva | |
21 | 20 | imdistani | |
22 | 8 | adantr | |
23 | simpr | |
|
24 | 9 1 2 3 4 5 6 7 22 23 | dihatexv | |
25 | 22 | adantr | |
26 | 22 13 14 | syl2an | |
27 | 2 7 | dihcnvid2 | |
28 | 25 26 27 | syl2anc | |
29 | 28 | eqeq2d | |
30 | simplr | |
|
31 | 25 26 16 | syl2anc | |
32 | 9 2 7 | dih11 | |
33 | 25 30 31 32 | syl3anc | |
34 | 29 33 | bitr3d | |
35 | 34 | rexbidva | |
36 | 24 35 | bitrd | |
37 | 11 21 36 | pm5.21nd | |