Metamath Proof Explorer


Theorem dihatexv2

Description: There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014)

Ref Expression
Hypotheses dihatexv2.a A=AtomsK
dihatexv2.h H=LHypK
dihatexv2.u U=DVecHKW
dihatexv2.v V=BaseU
dihatexv2.o 0˙=0U
dihatexv2.n N=LSpanU
dihatexv2.i I=DIsoHKW
dihatexv2.k φKHLWH
Assertion dihatexv2 φQAxV0˙Q=I-1Nx

Proof

Step Hyp Ref Expression
1 dihatexv2.a A=AtomsK
2 dihatexv2.h H=LHypK
3 dihatexv2.u U=DVecHKW
4 dihatexv2.v V=BaseU
5 dihatexv2.o 0˙=0U
6 dihatexv2.n N=LSpanU
7 dihatexv2.i I=DIsoHKW
8 dihatexv2.k φKHLWH
9 eqid BaseK=BaseK
10 9 1 atbase QAQBaseK
11 10 anim2i φQAφQBaseK
12 8 adantr φxV0˙KHLWH
13 eldifi xV0˙xV
14 2 3 4 6 7 dihlsprn KHLWHxVNxranI
15 8 13 14 syl2an φxV0˙NxranI
16 9 2 7 dihcnvcl KHLWHNxranII-1NxBaseK
17 12 15 16 syl2anc φxV0˙I-1NxBaseK
18 eleq1a I-1NxBaseKQ=I-1NxQBaseK
19 17 18 syl φxV0˙Q=I-1NxQBaseK
20 19 rexlimdva φxV0˙Q=I-1NxQBaseK
21 20 imdistani φxV0˙Q=I-1NxφQBaseK
22 8 adantr φQBaseKKHLWH
23 simpr φQBaseKQBaseK
24 9 1 2 3 4 5 6 7 22 23 dihatexv φQBaseKQAxV0˙IQ=Nx
25 22 adantr φQBaseKxV0˙KHLWH
26 22 13 14 syl2an φQBaseKxV0˙NxranI
27 2 7 dihcnvid2 KHLWHNxranIII-1Nx=Nx
28 25 26 27 syl2anc φQBaseKxV0˙II-1Nx=Nx
29 28 eqeq2d φQBaseKxV0˙IQ=II-1NxIQ=Nx
30 simplr φQBaseKxV0˙QBaseK
31 25 26 16 syl2anc φQBaseKxV0˙I-1NxBaseK
32 9 2 7 dih11 KHLWHQBaseKI-1NxBaseKIQ=II-1NxQ=I-1Nx
33 25 30 31 32 syl3anc φQBaseKxV0˙IQ=II-1NxQ=I-1Nx
34 29 33 bitr3d φQBaseKxV0˙IQ=NxQ=I-1Nx
35 34 rexbidva φQBaseKxV0˙IQ=NxxV0˙Q=I-1Nx
36 24 35 bitrd φQBaseKQAxV0˙Q=I-1Nx
37 11 21 36 pm5.21nd φQAxV0˙Q=I-1Nx