Metamath Proof Explorer


Theorem dihffval

Description: The isomorphism H for a lattice K . Definition of isomorphism map in Crawley p. 122 line 3. (Contributed by NM, 28-Jan-2014)

Ref Expression
Hypotheses dihval.b B=BaseK
dihval.l ˙=K
dihval.j ˙=joinK
dihval.m ˙=meetK
dihval.a A=AtomsK
dihval.h H=LHypK
Assertion dihffval KVDIsoHK=wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w

Proof

Step Hyp Ref Expression
1 dihval.b B=BaseK
2 dihval.l ˙=K
3 dihval.j ˙=joinK
4 dihval.m ˙=meetK
5 dihval.a A=AtomsK
6 dihval.h H=LHypK
7 elex KVKV
8 fveq2 k=KLHypk=LHypK
9 8 6 eqtr4di k=KLHypk=H
10 fveq2 k=KBasek=BaseK
11 10 1 eqtr4di k=KBasek=B
12 fveq2 k=Kk=K
13 12 2 eqtr4di k=Kk=˙
14 13 breqd k=Kxkwx˙w
15 fveq2 k=KDIsoBk=DIsoBK
16 15 fveq1d k=KDIsoBkw=DIsoBKw
17 16 fveq1d k=KDIsoBkwx=DIsoBKwx
18 fveq2 k=KDVecHk=DVecHK
19 18 fveq1d k=KDVecHkw=DVecHKw
20 19 fveq2d k=KLSubSpDVecHkw=LSubSpDVecHKw
21 fveq2 k=KAtomsk=AtomsK
22 21 5 eqtr4di k=KAtomsk=A
23 13 breqd k=Kqkwq˙w
24 23 notbid k=K¬qkw¬q˙w
25 fveq2 k=Kjoink=joinK
26 25 3 eqtr4di k=Kjoink=˙
27 eqidd k=Kq=q
28 fveq2 k=Kmeetk=meetK
29 28 4 eqtr4di k=Kmeetk=˙
30 29 oveqd k=Kxmeetkw=x˙w
31 26 27 30 oveq123d k=Kqjoinkxmeetkw=q˙x˙w
32 31 eqeq1d k=Kqjoinkxmeetkw=xq˙x˙w=x
33 24 32 anbi12d k=K¬qkwqjoinkxmeetkw=x¬q˙wq˙x˙w=x
34 19 fveq2d k=KLSSumDVecHkw=LSSumDVecHKw
35 fveq2 k=KDIsoCk=DIsoCK
36 35 fveq1d k=KDIsoCkw=DIsoCKw
37 36 fveq1d k=KDIsoCkwq=DIsoCKwq
38 16 30 fveq12d k=KDIsoBkwxmeetkw=DIsoBKwx˙w
39 34 37 38 oveq123d k=KDIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
40 39 eqeq2d k=Ku=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkwu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
41 33 40 imbi12d k=K¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
42 22 41 raleqbidv k=KqAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkwqA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
43 20 42 riotaeqbidv k=KιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw=ιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
44 14 17 43 ifbieq12d k=KifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw=ifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
45 11 44 mpteq12dv k=KxBasekifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw=xBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
46 9 45 mpteq12dv k=KwLHypkxBasekifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw=wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
47 df-dih DIsoH=kVwLHypkxBasekifxkwDIsoBkwxιuLSubSpDVecHkw|qAtomsk¬qkwqjoinkxmeetkw=xu=DIsoCkwqLSSumDVecHkwDIsoBkwxmeetkw
48 46 47 6 mptfvmpt KVDIsoHK=wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w
49 7 48 syl KVDIsoHK=wHxBifx˙wDIsoBKwxιuLSubSpDVecHKw|qA¬q˙wq˙x˙w=xu=DIsoCKwqLSSumDVecHKwDIsoBKwx˙w