Metamath Proof Explorer


Theorem dihmeetbclemN

Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihmeetc.b B=BaseK
dihmeetc.l ˙=K
dihmeetc.m ˙=meetK
dihmeetc.h H=LHypK
dihmeetc.i I=DIsoHKW
Assertion dihmeetbclemN KHLWHXBYBX˙Y˙WIX˙Y=IXIYIW

Proof

Step Hyp Ref Expression
1 dihmeetc.b B=BaseK
2 dihmeetc.l ˙=K
3 dihmeetc.m ˙=meetK
4 dihmeetc.h H=LHypK
5 dihmeetc.i I=DIsoHKW
6 simp3 KHLWHXBYBX˙Y˙WX˙Y˙W
7 simp1l KHLWHXBYBX˙Y˙WKHL
8 7 hllatd KHLWHXBYBX˙Y˙WKLat
9 simp2l KHLWHXBYBX˙Y˙WXB
10 simp2r KHLWHXBYBX˙Y˙WYB
11 1 3 latmcl KLatXBYBX˙YB
12 8 9 10 11 syl3anc KHLWHXBYBX˙Y˙WX˙YB
13 simp1r KHLWHXBYBX˙Y˙WWH
14 1 4 lhpbase WHWB
15 13 14 syl KHLWHXBYBX˙Y˙WWB
16 1 2 3 latleeqm1 KLatX˙YBWBX˙Y˙WX˙Y˙W=X˙Y
17 8 12 15 16 syl3anc KHLWHXBYBX˙Y˙WX˙Y˙WX˙Y˙W=X˙Y
18 6 17 mpbid KHLWHXBYBX˙Y˙WX˙Y˙W=X˙Y
19 hlol KHLKOL
20 7 19 syl KHLWHXBYBX˙Y˙WKOL
21 1 3 latmassOLD KOLXBYBWBX˙Y˙W=X˙Y˙W
22 20 9 10 15 21 syl13anc KHLWHXBYBX˙Y˙WX˙Y˙W=X˙Y˙W
23 18 22 eqtr3d KHLWHXBYBX˙Y˙WX˙Y=X˙Y˙W
24 23 fveq2d KHLWHXBYBX˙Y˙WIX˙Y=IX˙Y˙W
25 simp1 KHLWHXBYBX˙Y˙WKHLWH
26 1 3 latmcl KLatYBWBY˙WB
27 8 10 15 26 syl3anc KHLWHXBYBX˙Y˙WY˙WB
28 1 2 3 latmle2 KLatYBWBY˙W˙W
29 8 10 15 28 syl3anc KHLWHXBYBX˙Y˙WY˙W˙W
30 1 2 3 4 5 dihmeetbN KHLWHXBY˙WBY˙W˙WIX˙Y˙W=IXIY˙W
31 25 9 27 29 30 syl112anc KHLWHXBYBX˙Y˙WIX˙Y˙W=IXIY˙W
32 1 2 latref KLatWBW˙W
33 8 15 32 syl2anc KHLWHXBYBX˙Y˙WW˙W
34 1 2 3 4 5 dihmeetbN KHLWHYBWBW˙WIY˙W=IYIW
35 25 10 15 33 34 syl112anc KHLWHXBYBX˙Y˙WIY˙W=IYIW
36 35 ineq2d KHLWHXBYBX˙Y˙WIXIY˙W=IXIYIW
37 24 31 36 3eqtrd KHLWHXBYBX˙Y˙WIX˙Y=IXIYIW
38 inass IXIYIW=IXIYIW
39 37 38 eqtr4di KHLWHXBYBX˙Y˙WIX˙Y=IXIYIW