Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dihmeetc.b | |
|
dihmeetc.l | |
||
dihmeetc.m | |
||
dihmeetc.h | |
||
dihmeetc.i | |
||
Assertion | dihmeetbclemN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihmeetc.b | |
|
2 | dihmeetc.l | |
|
3 | dihmeetc.m | |
|
4 | dihmeetc.h | |
|
5 | dihmeetc.i | |
|
6 | simp3 | |
|
7 | simp1l | |
|
8 | 7 | hllatd | |
9 | simp2l | |
|
10 | simp2r | |
|
11 | 1 3 | latmcl | |
12 | 8 9 10 11 | syl3anc | |
13 | simp1r | |
|
14 | 1 4 | lhpbase | |
15 | 13 14 | syl | |
16 | 1 2 3 | latleeqm1 | |
17 | 8 12 15 16 | syl3anc | |
18 | 6 17 | mpbid | |
19 | hlol | |
|
20 | 7 19 | syl | |
21 | 1 3 | latmassOLD | |
22 | 20 9 10 15 21 | syl13anc | |
23 | 18 22 | eqtr3d | |
24 | 23 | fveq2d | |
25 | simp1 | |
|
26 | 1 3 | latmcl | |
27 | 8 10 15 26 | syl3anc | |
28 | 1 2 3 | latmle2 | |
29 | 8 10 15 28 | syl3anc | |
30 | 1 2 3 4 5 | dihmeetbN | |
31 | 25 9 27 29 30 | syl112anc | |
32 | 1 2 | latref | |
33 | 8 15 32 | syl2anc | |
34 | 1 2 3 4 5 | dihmeetbN | |
35 | 25 10 15 33 34 | syl112anc | |
36 | 35 | ineq2d | |
37 | 24 31 36 | 3eqtrd | |
38 | inass | |
|
39 | 37 38 | eqtr4di | |