Metamath Proof Explorer


Theorem dihmeetcl

Description: Closure of closed subspace meet for DVecH vector space. (Contributed by NM, 5-Aug-2014)

Ref Expression
Hypotheses dihmeetcl.h H=LHypK
dihmeetcl.i I=DIsoHKW
Assertion dihmeetcl KHLWHXranIYranIXYranI

Proof

Step Hyp Ref Expression
1 dihmeetcl.h H=LHypK
2 dihmeetcl.i I=DIsoHKW
3 1 2 dihcnvid2 KHLWHXranIII-1X=X
4 3 adantrr KHLWHXranIYranIII-1X=X
5 1 2 dihcnvid2 KHLWHYranIII-1Y=Y
6 5 adantrl KHLWHXranIYranIII-1Y=Y
7 4 6 ineq12d KHLWHXranIYranIII-1XII-1Y=XY
8 simpl KHLWHXranIYranIKHLWH
9 eqid BaseK=BaseK
10 9 1 2 dihcnvcl KHLWHXranII-1XBaseK
11 10 adantrr KHLWHXranIYranII-1XBaseK
12 9 1 2 dihcnvcl KHLWHYranII-1YBaseK
13 12 adantrl KHLWHXranIYranII-1YBaseK
14 eqid meetK=meetK
15 9 14 1 2 dihmeet KHLWHI-1XBaseKI-1YBaseKII-1XmeetKI-1Y=II-1XII-1Y
16 8 11 13 15 syl3anc KHLWHXranIYranIII-1XmeetKI-1Y=II-1XII-1Y
17 hllat KHLKLat
18 17 ad2antrr KHLWHXranIYranIKLat
19 9 14 latmcl KLatI-1XBaseKI-1YBaseKI-1XmeetKI-1YBaseK
20 18 11 13 19 syl3anc KHLWHXranIYranII-1XmeetKI-1YBaseK
21 9 1 2 dihcl KHLWHI-1XmeetKI-1YBaseKII-1XmeetKI-1YranI
22 20 21 syldan KHLWHXranIYranIII-1XmeetKI-1YranI
23 16 22 eqeltrrd KHLWHXranIYranIII-1XII-1YranI
24 7 23 eqeltrrd KHLWHXranIYranIXYranI