Metamath Proof Explorer


Theorem disjf1

Description: A 1 to 1 mapping built from disjoint, nonempty sets. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses disjf1.xph xφ
disjf1.f F=xAB
disjf1.b φxABV
disjf1.n0 φxAB
disjf1.dj φDisjxAB
Assertion disjf1 φF:A1-1V

Proof

Step Hyp Ref Expression
1 disjf1.xph xφ
2 disjf1.f F=xAB
3 disjf1.b φxABV
4 disjf1.n0 φxAB
5 disjf1.dj φDisjxAB
6 nfv xyA
7 1 6 nfan xφyA
8 nfcsb1v _xy/xB
9 nfcv _xV
10 8 9 nfel xy/xBV
11 7 10 nfim xφyAy/xBV
12 eleq1w x=yxAyA
13 12 anbi2d x=yφxAφyA
14 csbeq1a x=yB=y/xB
15 14 eleq1d x=yBVy/xBV
16 13 15 imbi12d x=yφxABVφyAy/xBV
17 11 16 3 chvarfv φyAy/xBV
18 17 ralrimiva φyAy/xBV
19 inidm y/xBy/xB=y/xB
20 19 eqcomi y/xB=y/xBy/xB
21 20 a1i φyAzAy/xB=z/xB¬y=zy/xB=y/xBy/xB
22 ineq2 y/xB=z/xBy/xBy/xB=y/xBz/xB
23 22 ad2antlr φyAzAy/xB=z/xB¬y=zy/xBy/xB=y/xBz/xB
24 nfcv _wB
25 nfcsb1v _xw/xB
26 csbeq1a x=wB=w/xB
27 24 25 26 cbvdisj DisjxABDisjwAw/xB
28 5 27 sylib φDisjwAw/xB
29 28 ad3antrrr φyAzAy/xB=z/xB¬y=zDisjwAw/xB
30 simpllr φyAzAy/xB=z/xB¬y=zyAzA
31 neqne ¬y=zyz
32 31 adantl φyAzAy/xB=z/xB¬y=zyz
33 csbeq1 w=yw/xB=y/xB
34 csbeq1 w=zw/xB=z/xB
35 33 34 disji2 DisjwAw/xByAzAyzy/xBz/xB=
36 29 30 32 35 syl3anc φyAzAy/xB=z/xB¬y=zy/xBz/xB=
37 21 23 36 3eqtrd φyAzAy/xB=z/xB¬y=zy/xB=
38 nfcv _x
39 8 38 nfne xy/xB
40 7 39 nfim xφyAy/xB
41 14 neeq1d x=yBy/xB
42 13 41 imbi12d x=yφxABφyAy/xB
43 40 42 4 chvarfv φyAy/xB
44 43 adantrr φyAzAy/xB
45 44 ad2antrr φyAzAy/xB=z/xB¬y=zy/xB
46 45 neneqd φyAzAy/xB=z/xB¬y=z¬y/xB=
47 37 46 condan φyAzAy/xB=z/xBy=z
48 47 ex φyAzAy/xB=z/xBy=z
49 48 ralrimivva φyAzAy/xB=z/xBy=z
50 18 49 jca φyAy/xBVyAzAy/xB=z/xBy=z
51 nfcv _yB
52 51 8 14 cbvmpt xAB=yAy/xB
53 2 52 eqtri F=yAy/xB
54 csbeq1 y=zy/xB=z/xB
55 53 54 f1mpt F:A1-1VyAy/xBVyAzAy/xB=z/xBy=z
56 50 55 sylibr φF:A1-1V