Metamath Proof Explorer


Theorem dochexmidlem1

Description: Lemma for dochexmid . Holland's proof implicitly requires q =/= r , which we prove here. (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H = LHyp K
dochexmidlem1.o ˙ = ocH K W
dochexmidlem1.u U = DVecH K W
dochexmidlem1.v V = Base U
dochexmidlem1.s S = LSubSp U
dochexmidlem1.n N = LSpan U
dochexmidlem1.p ˙ = LSSum U
dochexmidlem1.a A = LSAtoms U
dochexmidlem1.k φ K HL W H
dochexmidlem1.x φ X S
dochexmidlem1.pp φ p A
dochexmidlem1.qq φ q A
dochexmidlem1.rr φ r A
dochexmidlem1.ql φ q ˙ X
dochexmidlem1.rl φ r X
Assertion dochexmidlem1 φ q r

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H = LHyp K
2 dochexmidlem1.o ˙ = ocH K W
3 dochexmidlem1.u U = DVecH K W
4 dochexmidlem1.v V = Base U
5 dochexmidlem1.s S = LSubSp U
6 dochexmidlem1.n N = LSpan U
7 dochexmidlem1.p ˙ = LSSum U
8 dochexmidlem1.a A = LSAtoms U
9 dochexmidlem1.k φ K HL W H
10 dochexmidlem1.x φ X S
11 dochexmidlem1.pp φ p A
12 dochexmidlem1.qq φ q A
13 dochexmidlem1.rr φ r A
14 dochexmidlem1.ql φ q ˙ X
15 dochexmidlem1.rl φ r X
16 eqid 0 U = 0 U
17 1 3 9 dvhlmod φ U LMod
18 16 8 17 13 lsatn0 φ r 0 U
19 5 8 17 13 lsatlssel φ r S
20 16 5 lssle0 U LMod r S r 0 U r = 0 U
21 17 19 20 syl2anc φ r 0 U r = 0 U
22 21 necon3bbid φ ¬ r 0 U r 0 U
23 18 22 mpbird φ ¬ r 0 U
24 1 3 5 16 2 dochnoncon K HL W H X S X ˙ X = 0 U
25 9 10 24 syl2anc φ X ˙ X = 0 U
26 25 sseq2d φ r X ˙ X r 0 U
27 23 26 mtbird φ ¬ r X ˙ X
28 sseq1 q = r q ˙ X r ˙ X
29 14 28 syl5ibcom φ q = r r ˙ X
30 29 15 jctild φ q = r r X r ˙ X
31 ssin r X r ˙ X r X ˙ X
32 30 31 syl6ib φ q = r r X ˙ X
33 32 necon3bd φ ¬ r X ˙ X q r
34 27 33 mpd φ q r