Metamath Proof Explorer


Theorem dvh2dimatN

Description: Given an atom, there exists another. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dvh4dimat.h H=LHypK
dvh4dimat.u U=DVecHKW
dvh2dimat.a A=LSAtomsU
dvh2dimat.k φKHLWH
dvh2dimat.p φPA
Assertion dvh2dimatN φsAsP

Proof

Step Hyp Ref Expression
1 dvh4dimat.h H=LHypK
2 dvh4dimat.u U=DVecHKW
3 dvh2dimat.a A=LSAtomsU
4 dvh2dimat.k φKHLWH
5 dvh2dimat.p φPA
6 eqid LSSumU=LSSumU
7 1 2 6 3 4 5 5 dvh3dimatN φsA¬sPLSSumUP
8 1 2 4 dvhlmod φULMod
9 eqid LSubSpU=LSubSpU
10 9 3 8 5 lsatlssel φPLSubSpU
11 9 lsssubg ULModPLSubSpUPSubGrpU
12 8 10 11 syl2anc φPSubGrpU
13 6 lsmidm PSubGrpUPLSSumUP=P
14 12 13 syl φPLSSumUP=P
15 14 sseq2d φsPLSSumUPsP
16 15 adantr φsAsPLSSumUPsP
17 1 2 4 dvhlvec φULVec
18 17 adantr φsAULVec
19 simpr φsAsA
20 5 adantr φsAPA
21 3 18 19 20 lsatcmp φsAsPs=P
22 16 21 bitrd φsAsPLSSumUPs=P
23 22 necon3bbid φsA¬sPLSSumUPsP
24 23 rexbidva φsA¬sPLSSumUPsAsP
25 7 24 mpbid φsAsP