Description: Given an atom, there exists another. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvh4dimat.h | |
|
dvh4dimat.u | |
||
dvh2dimat.a | |
||
dvh2dimat.k | |
||
dvh2dimat.p | |
||
Assertion | dvh2dimatN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvh4dimat.h | |
|
2 | dvh4dimat.u | |
|
3 | dvh2dimat.a | |
|
4 | dvh2dimat.k | |
|
5 | dvh2dimat.p | |
|
6 | eqid | |
|
7 | 1 2 6 3 4 5 5 | dvh3dimatN | |
8 | 1 2 4 | dvhlmod | |
9 | eqid | |
|
10 | 9 3 8 5 | lsatlssel | |
11 | 9 | lsssubg | |
12 | 8 10 11 | syl2anc | |
13 | 6 | lsmidm | |
14 | 12 13 | syl | |
15 | 14 | sseq2d | |
16 | 15 | adantr | |
17 | 1 2 4 | dvhlvec | |
18 | 17 | adantr | |
19 | simpr | |
|
20 | 5 | adantr | |
21 | 3 18 19 20 | lsatcmp | |
22 | 16 21 | bitrd | |
23 | 22 | necon3bbid | |
24 | 23 | rexbidva | |
25 | 7 24 | mpbid | |