Metamath Proof Explorer


Theorem dvmulf

Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvaddf.s φ S
dvaddf.f φ F : X
dvaddf.g φ G : X
dvaddf.df φ dom F S = X
dvaddf.dg φ dom G S = X
Assertion dvmulf φ S D F × f G = F S × f G + f G S × f F

Proof

Step Hyp Ref Expression
1 dvaddf.s φ S
2 dvaddf.f φ F : X
3 dvaddf.g φ G : X
4 dvaddf.df φ dom F S = X
5 dvaddf.dg φ dom G S = X
6 2 adantr φ x X F : X
7 dvbsss dom F S S
8 4 7 eqsstrrdi φ X S
9 8 adantr φ x X X S
10 3 adantr φ x X G : X
11 1 adantr φ x X S
12 4 eleq2d φ x dom F S x X
13 12 biimpar φ x X x dom F S
14 5 eleq2d φ x dom G S x X
15 14 biimpar φ x X x dom G S
16 6 9 10 9 11 13 15 dvmul φ x X F × f G S x = F S x G x + G S x F x
17 16 mpteq2dva φ x X F × f G S x = x X F S x G x + G S x F x
18 dvfg S F × f G S : dom F × f G S
19 1 18 syl φ F × f G S : dom F × f G S
20 recnprss S S
21 1 20 syl φ S
22 mulcl x y x y
23 22 adantl φ x y x y
24 1 8 ssexd φ X V
25 inidm X X = X
26 23 2 3 24 24 25 off φ F × f G : X
27 21 26 8 dvbss φ dom F × f G S X
28 21 adantr φ x X S
29 fvexd φ x X F S x V
30 fvexd φ x X G S x V
31 dvfg S F S : dom F S
32 1 31 syl φ F S : dom F S
33 32 adantr φ x X F S : dom F S
34 ffun F S : dom F S Fun F S
35 funfvbrb Fun F S x dom F S x F S F S x
36 33 34 35 3syl φ x X x dom F S x F S F S x
37 13 36 mpbid φ x X x F S F S x
38 dvfg S G S : dom G S
39 1 38 syl φ G S : dom G S
40 39 adantr φ x X G S : dom G S
41 ffun G S : dom G S Fun G S
42 funfvbrb Fun G S x dom G S x G S G S x
43 40 41 42 3syl φ x X x dom G S x G S G S x
44 15 43 mpbid φ x X x G S G S x
45 eqid TopOpen fld = TopOpen fld
46 6 9 10 9 28 29 30 37 44 45 dvmulbr φ x X x F × f G S F S x G x + G S x F x
47 reldv Rel F × f G S
48 47 releldmi x F × f G S F S x G x + G S x F x x dom F × f G S
49 46 48 syl φ x X x dom F × f G S
50 27 49 eqelssd φ dom F × f G S = X
51 50 feq2d φ F × f G S : dom F × f G S F × f G S : X
52 19 51 mpbid φ F × f G S : X
53 52 feqmptd φ S D F × f G = x X F × f G S x
54 ovexd φ x X F S x G x V
55 ovexd φ x X G S x F x V
56 fvexd φ x X G x V
57 4 feq2d φ F S : dom F S F S : X
58 32 57 mpbid φ F S : X
59 58 feqmptd φ S D F = x X F S x
60 3 feqmptd φ G = x X G x
61 24 29 56 59 60 offval2 φ F S × f G = x X F S x G x
62 fvexd φ x X F x V
63 5 feq2d φ G S : dom G S G S : X
64 39 63 mpbid φ G S : X
65 64 feqmptd φ S D G = x X G S x
66 2 feqmptd φ F = x X F x
67 24 30 62 65 66 offval2 φ G S × f F = x X G S x F x
68 24 54 55 61 67 offval2 φ F S × f G + f G S × f F = x X F S x G x + G S x F x
69 17 53 68 3eqtr4d φ S D F × f G = F S × f G + f G S × f F