Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvaddf.s | |
|
dvaddf.f | |
||
dvaddf.g | |
||
dvaddf.df | |
||
dvaddf.dg | |
||
Assertion | dvmulf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvaddf.s | |
|
2 | dvaddf.f | |
|
3 | dvaddf.g | |
|
4 | dvaddf.df | |
|
5 | dvaddf.dg | |
|
6 | 2 | adantr | |
7 | dvbsss | |
|
8 | 4 7 | eqsstrrdi | |
9 | 8 | adantr | |
10 | 3 | adantr | |
11 | 1 | adantr | |
12 | 4 | eleq2d | |
13 | 12 | biimpar | |
14 | 5 | eleq2d | |
15 | 14 | biimpar | |
16 | 6 9 10 9 11 13 15 | dvmul | |
17 | 16 | mpteq2dva | |
18 | dvfg | |
|
19 | 1 18 | syl | |
20 | recnprss | |
|
21 | 1 20 | syl | |
22 | mulcl | |
|
23 | 22 | adantl | |
24 | 1 8 | ssexd | |
25 | inidm | |
|
26 | 23 2 3 24 24 25 | off | |
27 | 21 26 8 | dvbss | |
28 | 21 | adantr | |
29 | fvexd | |
|
30 | fvexd | |
|
31 | dvfg | |
|
32 | 1 31 | syl | |
33 | 32 | adantr | |
34 | ffun | |
|
35 | funfvbrb | |
|
36 | 33 34 35 | 3syl | |
37 | 13 36 | mpbid | |
38 | dvfg | |
|
39 | 1 38 | syl | |
40 | 39 | adantr | |
41 | ffun | |
|
42 | funfvbrb | |
|
43 | 40 41 42 | 3syl | |
44 | 15 43 | mpbid | |
45 | eqid | |
|
46 | 6 9 10 9 28 29 30 37 44 45 | dvmulbr | |
47 | reldv | |
|
48 | 47 | releldmi | |
49 | 46 48 | syl | |
50 | 27 49 | eqelssd | |
51 | 50 | feq2d | |
52 | 19 51 | mpbid | |
53 | 52 | feqmptd | |
54 | ovexd | |
|
55 | ovexd | |
|
56 | fvexd | |
|
57 | 4 | feq2d | |
58 | 32 57 | mpbid | |
59 | 58 | feqmptd | |
60 | 3 | feqmptd | |
61 | 24 29 56 59 60 | offval2 | |
62 | fvexd | |
|
63 | 5 | feq2d | |
64 | 39 63 | mpbid | |
65 | 64 | feqmptd | |
66 | 2 | feqmptd | |
67 | 24 30 62 65 66 | offval2 | |
68 | 24 54 55 61 67 | offval2 | |
69 | 17 53 68 | 3eqtr4d | |