Metamath Proof Explorer


Theorem dvmulf

Description: The product rule for everywhere-differentiable functions. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvaddf.s φS
dvaddf.f φF:X
dvaddf.g φG:X
dvaddf.df φdomFS=X
dvaddf.dg φdomGS=X
Assertion dvmulf φSDF×fG=FS×fG+fGS×fF

Proof

Step Hyp Ref Expression
1 dvaddf.s φS
2 dvaddf.f φF:X
3 dvaddf.g φG:X
4 dvaddf.df φdomFS=X
5 dvaddf.dg φdomGS=X
6 2 adantr φxXF:X
7 dvbsss domFSS
8 4 7 eqsstrrdi φXS
9 8 adantr φxXXS
10 3 adantr φxXG:X
11 1 adantr φxXS
12 4 eleq2d φxdomFSxX
13 12 biimpar φxXxdomFS
14 5 eleq2d φxdomGSxX
15 14 biimpar φxXxdomGS
16 6 9 10 9 11 13 15 dvmul φxXF×fGSx=FSxGx+GSxFx
17 16 mpteq2dva φxXF×fGSx=xXFSxGx+GSxFx
18 dvfg SF×fGS:domF×fGS
19 1 18 syl φF×fGS:domF×fGS
20 recnprss SS
21 1 20 syl φS
22 mulcl xyxy
23 22 adantl φxyxy
24 1 8 ssexd φXV
25 inidm XX=X
26 23 2 3 24 24 25 off φF×fG:X
27 21 26 8 dvbss φdomF×fGSX
28 21 adantr φxXS
29 fvexd φxXFSxV
30 fvexd φxXGSxV
31 dvfg SFS:domFS
32 1 31 syl φFS:domFS
33 32 adantr φxXFS:domFS
34 ffun FS:domFSFunFS
35 funfvbrb FunFSxdomFSxFSFSx
36 33 34 35 3syl φxXxdomFSxFSFSx
37 13 36 mpbid φxXxFSFSx
38 dvfg SGS:domGS
39 1 38 syl φGS:domGS
40 39 adantr φxXGS:domGS
41 ffun GS:domGSFunGS
42 funfvbrb FunGSxdomGSxGSGSx
43 40 41 42 3syl φxXxdomGSxGSGSx
44 15 43 mpbid φxXxGSGSx
45 eqid TopOpenfld=TopOpenfld
46 6 9 10 9 28 29 30 37 44 45 dvmulbr φxXxF×fGSFSxGx+GSxFx
47 reldv RelF×fGS
48 47 releldmi xF×fGSFSxGx+GSxFxxdomF×fGS
49 46 48 syl φxXxdomF×fGS
50 27 49 eqelssd φdomF×fGS=X
51 50 feq2d φF×fGS:domF×fGSF×fGS:X
52 19 51 mpbid φF×fGS:X
53 52 feqmptd φSDF×fG=xXF×fGSx
54 ovexd φxXFSxGxV
55 ovexd φxXGSxFxV
56 fvexd φxXGxV
57 4 feq2d φFS:domFSFS:X
58 32 57 mpbid φFS:X
59 58 feqmptd φSDF=xXFSx
60 3 feqmptd φG=xXGx
61 24 29 56 59 60 offval2 φFS×fG=xXFSxGx
62 fvexd φxXFxV
63 5 feq2d φGS:domGSGS:X
64 39 63 mpbid φGS:X
65 64 feqmptd φSDG=xXGSx
66 2 feqmptd φF=xXFx
67 24 30 62 65 66 offval2 φGS×fF=xXGSxFx
68 24 54 55 61 67 offval2 φFS×fG+fGS×fF=xXFSxGx+GSxFx
69 17 53 68 3eqtr4d φSDF×fG=FS×fG+fGS×fF