Description: The multinomial formula for the N -th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvnprod.s | |
|
dvnprod.x | |
||
dvnprod.t | |
||
dvnprod.h | |
||
dvnprod.n | |
||
dvnprod.dvnh | |
||
dvnprod.f | |
||
dvnprod.c | |
||
Assertion | dvnprod | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvnprod.s | |
|
2 | dvnprod.x | |
|
3 | dvnprod.t | |
|
4 | dvnprod.h | |
|
5 | dvnprod.n | |
|
6 | dvnprod.dvnh | |
|
7 | dvnprod.f | |
|
8 | dvnprod.c | |
|
9 | fveq2 | |
|
10 | 9 | cbvsumv | |
11 | 10 | eqeq1i | |
12 | 11 | rabbii | |
13 | fveq1 | |
|
14 | 13 | sumeq2sdv | |
15 | 14 | eqeq1d | |
16 | 15 | cbvrabv | |
17 | 12 16 | eqtri | |
18 | 17 | mpteq2i | |
19 | eqeq2 | |
|
20 | 19 | rabbidv | |
21 | oveq2 | |
|
22 | 21 | oveq1d | |
23 | rabeq | |
|
24 | 22 23 | syl | |
25 | 20 24 | eqtrd | |
26 | 25 | cbvmptv | |
27 | 18 26 | eqtri | |
28 | 27 | mpteq2i | |
29 | sumeq1 | |
|
30 | 29 | eqeq1d | |
31 | 30 | rabbidv | |
32 | oveq2 | |
|
33 | rabeq | |
|
34 | 32 33 | syl | |
35 | 31 34 | eqtrd | |
36 | 35 | mpteq2dv | |
37 | 36 | cbvmptv | |
38 | 28 37 | eqtri | |
39 | fveq1 | |
|
40 | 39 | sumeq2sdv | |
41 | 40 | eqeq1d | |
42 | 41 | cbvrabv | |
43 | 42 | mpteq2i | |
44 | 8 43 | eqtri | |
45 | 1 2 3 4 5 6 7 38 44 | dvnprodlem3 | |
46 | fveq1 | |
|
47 | 46 | fveq2d | |
48 | 47 | prodeq2ad | |
49 | 48 | oveq2d | |
50 | 46 | fveq2d | |
51 | 50 | fveq1d | |
52 | 51 | prodeq2ad | |
53 | 49 52 | oveq12d | |
54 | 53 | cbvsumv | |
55 | eqid | |
|
56 | 54 55 | eqtri | |
57 | 56 | mpteq2i | |
58 | 57 | a1i | |
59 | 45 58 | eqtrd | |