Metamath Proof Explorer


Theorem dvnprod

Description: The multinomial formula for the N -th derivative of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses dvnprod.s φS
dvnprod.x φXTopOpenfld𝑡S
dvnprod.t φTFin
dvnprod.h φtTHt:X
dvnprod.n φN0
dvnprod.dvnh φtTk0NSDnHtk:X
dvnprod.f F=xXtTHtx
dvnprod.c C=n0c0nT|tTct=n
Assertion dvnprod φSDnFN=xXcCNN!tTct!tTSDnHtctx

Proof

Step Hyp Ref Expression
1 dvnprod.s φS
2 dvnprod.x φXTopOpenfld𝑡S
3 dvnprod.t φTFin
4 dvnprod.h φtTHt:X
5 dvnprod.n φN0
6 dvnprod.dvnh φtTk0NSDnHtk:X
7 dvnprod.f F=xXtTHtx
8 dvnprod.c C=n0c0nT|tTct=n
9 fveq2 u=tdu=dt
10 9 cbvsumv urdu=trdt
11 10 eqeq1i urdu=mtrdt=m
12 11 rabbii d0mr|urdu=m=d0mr|trdt=m
13 fveq1 d=edt=et
14 13 sumeq2sdv d=etrdt=tret
15 14 eqeq1d d=etrdt=mtret=m
16 15 cbvrabv d0mr|trdt=m=e0mr|tret=m
17 12 16 eqtri d0mr|urdu=m=e0mr|tret=m
18 17 mpteq2i m0d0mr|urdu=m=m0e0mr|tret=m
19 eqeq2 m=ntret=mtret=n
20 19 rabbidv m=ne0mr|tret=m=e0mr|tret=n
21 oveq2 m=n0m=0n
22 21 oveq1d m=n0mr=0nr
23 rabeq 0mr=0nre0mr|tret=n=e0nr|tret=n
24 22 23 syl m=ne0mr|tret=n=e0nr|tret=n
25 20 24 eqtrd m=ne0mr|tret=m=e0nr|tret=n
26 25 cbvmptv m0e0mr|tret=m=n0e0nr|tret=n
27 18 26 eqtri m0d0mr|urdu=m=n0e0nr|tret=n
28 27 mpteq2i r𝒫Tm0d0mr|urdu=m=r𝒫Tn0e0nr|tret=n
29 sumeq1 r=stret=tset
30 29 eqeq1d r=stret=ntset=n
31 30 rabbidv r=se0nr|tret=n=e0nr|tset=n
32 oveq2 r=s0nr=0ns
33 rabeq 0nr=0nse0nr|tset=n=e0ns|tset=n
34 32 33 syl r=se0nr|tset=n=e0ns|tset=n
35 31 34 eqtrd r=se0nr|tret=n=e0ns|tset=n
36 35 mpteq2dv r=sn0e0nr|tret=n=n0e0ns|tset=n
37 36 cbvmptv r𝒫Tn0e0nr|tret=n=s𝒫Tn0e0ns|tset=n
38 28 37 eqtri r𝒫Tm0d0mr|urdu=m=s𝒫Tn0e0ns|tset=n
39 fveq1 c=ect=et
40 39 sumeq2sdv c=etTct=tTet
41 40 eqeq1d c=etTct=ntTet=n
42 41 cbvrabv c0nT|tTct=n=e0nT|tTet=n
43 42 mpteq2i n0c0nT|tTct=n=n0e0nT|tTet=n
44 8 43 eqtri C=n0e0nT|tTet=n
45 1 2 3 4 5 6 7 38 44 dvnprodlem3 φSDnFN=xXeCNN!tTet!tTSDnHtetx
46 fveq1 e=cet=ct
47 46 fveq2d e=cet!=ct!
48 47 prodeq2ad e=ctTet!=tTct!
49 48 oveq2d e=cN!tTet!=N!tTct!
50 46 fveq2d e=cSDnHtet=SDnHtct
51 50 fveq1d e=cSDnHtetx=SDnHtctx
52 51 prodeq2ad e=ctTSDnHtetx=tTSDnHtctx
53 49 52 oveq12d e=cN!tTet!tTSDnHtetx=N!tTct!tTSDnHtctx
54 53 cbvsumv eCNN!tTet!tTSDnHtetx=cCNN!tTct!tTSDnHtctx
55 eqid cCNN!tTct!tTSDnHtctx=cCNN!tTct!tTSDnHtctx
56 54 55 eqtri eCNN!tTet!tTSDnHtetx=cCNN!tTct!tTSDnHtctx
57 56 mpteq2i xXeCNN!tTet!tTSDnHtetx=xXcCNN!tTct!tTSDnHtctx
58 57 a1i φxXeCNN!tTet!tTSDnHtetx=xXcCNN!tTct!tTSDnHtctx
59 45 58 eqtrd φSDnFN=xXcCNN!tTct!tTSDnHtctx