Metamath Proof Explorer


Theorem dvreacos

Description: Real derivative of arccosine. (Contributed by Brendan Leahy, 3-Aug-2017) (Proof shortened by Brendan Leahy, 18-Dec-2018)

Ref Expression
Assertion dvreacos Darccos11=x1111x2

Proof

Step Hyp Ref Expression
1 acosf arccos:
2 1 a1i arccos:
3 ioossre 11
4 ax-resscn
5 3 4 sstri 11
6 5 a1i 11
7 2 6 feqresmpt arccos11=x11arccosx
8 7 oveq2d Darccos11=dx11arccosxdx
9 eqid TopOpenfld=TopOpenfld
10 reelprrecn
11 10 a1i
12 9 recld2 ClsdTopOpenfld
13 neg1rr 1
14 iocmnfcld 1−∞1ClsdtopGenran.
15 13 14 ax-mp −∞1ClsdtopGenran.
16 1re 1
17 icopnfcld 11+∞ClsdtopGenran.
18 16 17 ax-mp 1+∞ClsdtopGenran.
19 uncld −∞1ClsdtopGenran.1+∞ClsdtopGenran.−∞11+∞ClsdtopGenran.
20 15 18 19 mp2an −∞11+∞ClsdtopGenran.
21 9 tgioo2 topGenran.=TopOpenfld𝑡
22 21 fveq2i ClsdtopGenran.=ClsdTopOpenfld𝑡
23 20 22 eleqtri −∞11+∞ClsdTopOpenfld𝑡
24 restcldr ClsdTopOpenfld−∞11+∞ClsdTopOpenfld𝑡−∞11+∞ClsdTopOpenfld
25 12 23 24 mp2an −∞11+∞ClsdTopOpenfld
26 9 cnfldtopon TopOpenfldTopOn
27 26 toponunii =TopOpenfld
28 27 cldopn −∞11+∞ClsdTopOpenfld−∞11+∞TopOpenfld
29 25 28 mp1i −∞11+∞TopOpenfld
30 incom −∞11+∞=−∞11+∞
31 eqid −∞11+∞=−∞11+∞
32 31 asindmre −∞11+∞=11
33 30 32 eqtri −∞11+∞=11
34 33 a1i −∞11+∞=11
35 eldifi x−∞11+∞x
36 acoscl xarccosx
37 35 36 syl x−∞11+∞arccosx
38 37 adantl x−∞11+∞arccosx
39 ovexd x−∞11+∞11x2V
40 difssd −∞11+∞
41 2 40 feqresmpt arccos−∞11+∞=x−∞11+∞arccosx
42 41 oveq2d Darccos−∞11+∞=dx−∞11+∞arccosxdx
43 31 dvacos Darccos−∞11+∞=x−∞11+∞11x2
44 42 43 eqtr3di dx−∞11+∞arccosxdx=x−∞11+∞11x2
45 9 11 29 34 38 39 44 dvmptres3 dx11arccosxdx=x1111x2
46 8 45 eqtrd Darccos11=x1111x2
47 46 mptru Darccos11=x1111x2