Metamath Proof Explorer


Theorem dvreasin

Description: Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017) (Proof shortened by Brendan Leahy, 18-Dec-2018)

Ref Expression
Assertion dvreasin Darcsin11=x1111x2

Proof

Step Hyp Ref Expression
1 asinf arcsin:
2 1 a1i arcsin:
3 ioossre 11
4 ax-resscn
5 3 4 sstri 11
6 5 a1i 11
7 2 6 feqresmpt arcsin11=x11arcsinx
8 7 oveq2d Darcsin11=dx11arcsinxdx
9 eqid TopOpenfld=TopOpenfld
10 reelprrecn
11 10 a1i
12 9 recld2 ClsdTopOpenfld
13 neg1rr 1
14 iocmnfcld 1−∞1ClsdtopGenran.
15 13 14 ax-mp −∞1ClsdtopGenran.
16 1re 1
17 icopnfcld 11+∞ClsdtopGenran.
18 16 17 ax-mp 1+∞ClsdtopGenran.
19 uncld −∞1ClsdtopGenran.1+∞ClsdtopGenran.−∞11+∞ClsdtopGenran.
20 15 18 19 mp2an −∞11+∞ClsdtopGenran.
21 9 tgioo2 topGenran.=TopOpenfld𝑡
22 21 fveq2i ClsdtopGenran.=ClsdTopOpenfld𝑡
23 20 22 eleqtri −∞11+∞ClsdTopOpenfld𝑡
24 restcldr ClsdTopOpenfld−∞11+∞ClsdTopOpenfld𝑡−∞11+∞ClsdTopOpenfld
25 12 23 24 mp2an −∞11+∞ClsdTopOpenfld
26 9 cnfldtopon TopOpenfldTopOn
27 26 toponunii =TopOpenfld
28 27 cldopn −∞11+∞ClsdTopOpenfld−∞11+∞TopOpenfld
29 25 28 mp1i −∞11+∞TopOpenfld
30 incom −∞11+∞=−∞11+∞
31 eqid −∞11+∞=−∞11+∞
32 31 asindmre −∞11+∞=11
33 30 32 eqtri −∞11+∞=11
34 33 a1i −∞11+∞=11
35 eldifi x−∞11+∞x
36 asincl xarcsinx
37 35 36 syl x−∞11+∞arcsinx
38 37 adantl x−∞11+∞arcsinx
39 ovexd x−∞11+∞11x2V
40 difssd −∞11+∞
41 2 40 feqresmpt arcsin−∞11+∞=x−∞11+∞arcsinx
42 41 oveq2d Darcsin−∞11+∞=dx−∞11+∞arcsinxdx
43 31 dvasin Darcsin−∞11+∞=x−∞11+∞11x2
44 42 43 eqtr3di dx−∞11+∞arcsinxdx=x−∞11+∞11x2
45 9 11 29 34 38 39 44 dvmptres3 dx11arcsinxdx=x1111x2
46 8 45 eqtrd Darcsin11=x1111x2
47 46 mptru Darcsin11=x1111x2