Description: Real derivative of arcsine. (Contributed by Brendan Leahy, 3-Aug-2017) (Proof shortened by Brendan Leahy, 18-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | dvreasin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asinf | |
|
2 | 1 | a1i | |
3 | ioossre | |
|
4 | ax-resscn | |
|
5 | 3 4 | sstri | |
6 | 5 | a1i | |
7 | 2 6 | feqresmpt | |
8 | 7 | oveq2d | |
9 | eqid | |
|
10 | reelprrecn | |
|
11 | 10 | a1i | |
12 | 9 | recld2 | |
13 | neg1rr | |
|
14 | iocmnfcld | |
|
15 | 13 14 | ax-mp | |
16 | 1re | |
|
17 | icopnfcld | |
|
18 | 16 17 | ax-mp | |
19 | uncld | |
|
20 | 15 18 19 | mp2an | |
21 | 9 | tgioo2 | |
22 | 21 | fveq2i | |
23 | 20 22 | eleqtri | |
24 | restcldr | |
|
25 | 12 23 24 | mp2an | |
26 | 9 | cnfldtopon | |
27 | 26 | toponunii | |
28 | 27 | cldopn | |
29 | 25 28 | mp1i | |
30 | incom | |
|
31 | eqid | |
|
32 | 31 | asindmre | |
33 | 30 32 | eqtri | |
34 | 33 | a1i | |
35 | eldifi | |
|
36 | asincl | |
|
37 | 35 36 | syl | |
38 | 37 | adantl | |
39 | ovexd | |
|
40 | difssd | |
|
41 | 2 40 | feqresmpt | |
42 | 41 | oveq2d | |
43 | 31 | dvasin | |
44 | 42 43 | eqtr3di | |
45 | 9 11 29 34 38 39 44 | dvmptres3 | |
46 | 8 45 | eqtrd | |
47 | 46 | mptru | |