Metamath Proof Explorer


Theorem dyadmaxlem

Description: Lemma for dyadmax . (Contributed by Mario Carneiro, 26-Mar-2015)

Ref Expression
Hypotheses dyadmbl.1 F=x,y0x2yx+12y
dyadmax.2 φA
dyadmax.3 φB
dyadmax.4 φC0
dyadmax.5 φD0
dyadmax.6 φ¬D<C
dyadmax.7 φ.AFC.BFD
Assertion dyadmaxlem φA=BC=D

Proof

Step Hyp Ref Expression
1 dyadmbl.1 F=x,y0x2yx+12y
2 dyadmax.2 φA
3 dyadmax.3 φB
4 dyadmax.4 φC0
5 dyadmax.5 φD0
6 dyadmax.6 φ¬D<C
7 dyadmax.7 φ.AFC.BFD
8 1 dyadval AC0AFC=A2CA+12C
9 2 4 8 syl2anc φAFC=A2CA+12C
10 9 fveq2d φ.AFC=.A2CA+12C
11 df-ov A2CA+12C=.A2CA+12C
12 10 11 eqtr4di φ.AFC=A2CA+12C
13 1 dyadss ABC0D0.AFC.BFDDC
14 2 3 4 5 13 syl22anc φ.AFC.BFDDC
15 7 14 mpd φDC
16 5 nn0red φD
17 4 nn0red φC
18 16 17 eqleltd φD=CDC¬D<C
19 15 6 18 mpbir2and φD=C
20 19 oveq2d φBFD=BFC
21 1 dyadval BC0BFC=B2CB+12C
22 3 4 21 syl2anc φBFC=B2CB+12C
23 20 22 eqtrd φBFD=B2CB+12C
24 23 fveq2d φ.BFD=.B2CB+12C
25 df-ov B2CB+12C=.B2CB+12C
26 24 25 eqtr4di φ.BFD=B2CB+12C
27 7 12 26 3sstr3d φA2CA+12CB2CB+12C
28 2 zred φA
29 2nn 2
30 nnexpcl 2C02C
31 29 4 30 sylancr φ2C
32 28 31 nndivred φA2C
33 32 rexrd φA2C*
34 peano2re AA+1
35 28 34 syl φA+1
36 35 31 nndivred φA+12C
37 36 rexrd φA+12C*
38 28 lep1d φAA+1
39 31 nnred φ2C
40 31 nngt0d φ0<2C
41 lediv1 AA+12C0<2CAA+1A2CA+12C
42 28 35 39 40 41 syl112anc φAA+1A2CA+12C
43 38 42 mpbid φA2CA+12C
44 ubicc2 A2C*A+12C*A2CA+12CA+12CA2CA+12C
45 33 37 43 44 syl3anc φA+12CA2CA+12C
46 27 45 sseldd φA+12CB2CB+12C
47 3 zred φB
48 47 31 nndivred φB2C
49 peano2re BB+1
50 47 49 syl φB+1
51 50 31 nndivred φB+12C
52 elicc2 B2CB+12CA+12CB2CB+12CA+12CB2CA+12CA+12CB+12C
53 48 51 52 syl2anc φA+12CB2CB+12CA+12CB2CA+12CA+12CB+12C
54 46 53 mpbid φA+12CB2CA+12CA+12CB+12C
55 54 simp3d φA+12CB+12C
56 lediv1 A+1B+12C0<2CA+1B+1A+12CB+12C
57 35 50 39 40 56 syl112anc φA+1B+1A+12CB+12C
58 55 57 mpbird φA+1B+1
59 1red φ1
60 28 47 59 leadd1d φABA+1B+1
61 58 60 mpbird φAB
62 lbicc2 A2C*A+12C*A2CA+12CA2CA2CA+12C
63 33 37 43 62 syl3anc φA2CA2CA+12C
64 27 63 sseldd φA2CB2CB+12C
65 elicc2 B2CB+12CA2CB2CB+12CA2CB2CA2CA2CB+12C
66 48 51 65 syl2anc φA2CB2CB+12CA2CB2CA2CA2CB+12C
67 64 66 mpbid φA2CB2CA2CA2CB+12C
68 67 simp2d φB2CA2C
69 lediv1 BA2C0<2CBAB2CA2C
70 47 28 39 40 69 syl112anc φBAB2CA2C
71 68 70 mpbird φBA
72 28 47 letri3d φA=BABBA
73 61 71 72 mpbir2and φA=B
74 19 eqcomd φC=D
75 73 74 jca φA=BC=D