Metamath Proof Explorer


Theorem eflegeo

Description: The exponential function on the reals between 0 and 1 lies below the comparable geometric series sum. (Contributed by Paul Chapman, 11-Sep-2007)

Ref Expression
Hypotheses eflegeo.1 φA
eflegeo.2 φ0A
eflegeo.3 φA<1
Assertion eflegeo φeA11A

Proof

Step Hyp Ref Expression
1 eflegeo.1 φA
2 eflegeo.2 φ0A
3 eflegeo.3 φA<1
4 nn0uz 0=0
5 0zd φ0
6 eqid n0Ann!=n0Ann!
7 6 eftval k0n0Ann!k=Akk!
8 7 adantl φk0n0Ann!k=Akk!
9 reeftcl Ak0Akk!
10 1 9 sylan φk0Akk!
11 oveq2 n=kAn=Ak
12 eqid n0An=n0An
13 ovex AkV
14 11 12 13 fvmpt k0n0Ank=Ak
15 14 adantl φk0n0Ank=Ak
16 reexpcl Ak0Ak
17 1 16 sylan φk0Ak
18 faccl k0k!
19 18 adantl φk0k!
20 19 nnred φk0k!
21 1 adantr φk0A
22 simpr φk0k0
23 2 adantr φk00A
24 21 22 23 expge0d φk00Ak
25 19 nnge1d φk01k!
26 17 20 24 25 lemulge12d φk0Akk!Ak
27 19 nngt0d φk00<k!
28 ledivmul AkAkk!0<k!Akk!AkAkk!Ak
29 17 17 20 27 28 syl112anc φk0Akk!AkAkk!Ak
30 26 29 mpbird φk0Akk!Ak
31 1 recnd φA
32 6 efcllem Aseq0+n0Ann!dom
33 31 32 syl φseq0+n0Ann!dom
34 1 2 absidd φA=A
35 34 3 eqbrtrd φA<1
36 31 35 15 geolim φseq0+n0An11A
37 seqex seq0+n0AnV
38 ovex 11AV
39 37 38 breldm seq0+n0An11Aseq0+n0Andom
40 36 39 syl φseq0+n0Andom
41 4 5 8 10 15 17 30 33 40 isumle φk0Akk!k0Ak
42 efval AeA=k0Akk!
43 31 42 syl φeA=k0Akk!
44 expcl Ak0Ak
45 31 44 sylan φk0Ak
46 4 5 15 45 36 isumclim φk0Ak=11A
47 46 eqcomd φ11A=k0Ak
48 41 43 47 3brtr4d φeA11A