Metamath Proof Explorer


Theorem efmndtmd

Description: The monoid of endofunctions on a set A is a topological monoid. Formerly part of proof for symgtgp . (Contributed by AV, 23-Feb-2024)

Ref Expression
Hypothesis efmndtmd.g No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
Assertion efmndtmd A V M TopMnd

Proof

Step Hyp Ref Expression
1 efmndtmd.g Could not format M = ( EndoFMnd ` A ) : No typesetting found for |- M = ( EndoFMnd ` A ) with typecode |-
2 1 efmndmnd A V M Mnd
3 eqid Base M = Base M
4 1 3 efmndtopn A V 𝑡 A × 𝒫 A 𝑡 Base M = TopOpen M
5 distopon A V 𝒫 A TopOn A
6 eqid 𝑡 A × 𝒫 A = 𝑡 A × 𝒫 A
7 6 pttoponconst A V 𝒫 A TopOn A 𝑡 A × 𝒫 A TopOn A A
8 5 7 mpdan A V 𝑡 A × 𝒫 A TopOn A A
9 1 3 efmndbas Base M = A A
10 9 eleq2i x Base M x A A
11 10 biimpi x Base M x A A
12 11 a1i A V x Base M x A A
13 12 ssrdv A V Base M A A
14 resttopon 𝑡 A × 𝒫 A TopOn A A Base M A A 𝑡 A × 𝒫 A 𝑡 Base M TopOn Base M
15 8 13 14 syl2anc A V 𝑡 A × 𝒫 A 𝑡 Base M TopOn Base M
16 4 15 eqeltrrd A V TopOpen M TopOn Base M
17 eqid TopOpen M = TopOpen M
18 3 17 istps M TopSp TopOpen M TopOn Base M
19 16 18 sylibr A V M TopSp
20 eqid + M = + M
21 1 3 20 efmndplusg + M = x Base M , y Base M x y
22 eqid 𝒫 A ^ ko 𝒫 A 𝑡 Base M = 𝒫 A ^ ko 𝒫 A 𝑡 Base M
23 distop A V 𝒫 A Top
24 eqid 𝒫 A ^ ko 𝒫 A = 𝒫 A ^ ko 𝒫 A
25 24 xkotopon 𝒫 A Top 𝒫 A Top 𝒫 A ^ ko 𝒫 A TopOn 𝒫 A Cn 𝒫 A
26 23 23 25 syl2anc A V 𝒫 A ^ ko 𝒫 A TopOn 𝒫 A Cn 𝒫 A
27 cndis A V 𝒫 A TopOn A 𝒫 A Cn 𝒫 A = A A
28 5 27 mpdan A V 𝒫 A Cn 𝒫 A = A A
29 13 28 sseqtrrd A V Base M 𝒫 A Cn 𝒫 A
30 disllycmp A V 𝒫 A Locally Comp
31 llynlly 𝒫 A Locally Comp 𝒫 A N-Locally Comp
32 30 31 syl A V 𝒫 A N-Locally Comp
33 eqid x 𝒫 A Cn 𝒫 A , y 𝒫 A Cn 𝒫 A x y = x 𝒫 A Cn 𝒫 A , y 𝒫 A Cn 𝒫 A x y
34 33 xkococn 𝒫 A Top 𝒫 A N-Locally Comp 𝒫 A Top x 𝒫 A Cn 𝒫 A , y 𝒫 A Cn 𝒫 A x y 𝒫 A ^ ko 𝒫 A × t 𝒫 A ^ ko 𝒫 A Cn 𝒫 A ^ ko 𝒫 A
35 23 32 23 34 syl3anc A V x 𝒫 A Cn 𝒫 A , y 𝒫 A Cn 𝒫 A x y 𝒫 A ^ ko 𝒫 A × t 𝒫 A ^ ko 𝒫 A Cn 𝒫 A ^ ko 𝒫 A
36 22 26 29 22 26 29 35 cnmpt2res A V x Base M , y Base M x y 𝒫 A ^ ko 𝒫 A 𝑡 Base M × t 𝒫 A ^ ko 𝒫 A 𝑡 Base M Cn 𝒫 A ^ ko 𝒫 A
37 21 36 eqeltrid A V + M 𝒫 A ^ ko 𝒫 A 𝑡 Base M × t 𝒫 A ^ ko 𝒫 A 𝑡 Base M Cn 𝒫 A ^ ko 𝒫 A
38 xkopt 𝒫 A Top A V 𝒫 A ^ ko 𝒫 A = 𝑡 A × 𝒫 A
39 23 38 mpancom A V 𝒫 A ^ ko 𝒫 A = 𝑡 A × 𝒫 A
40 39 oveq1d A V 𝒫 A ^ ko 𝒫 A 𝑡 Base M = 𝑡 A × 𝒫 A 𝑡 Base M
41 40 4 eqtrd A V 𝒫 A ^ ko 𝒫 A 𝑡 Base M = TopOpen M
42 41 41 oveq12d A V 𝒫 A ^ ko 𝒫 A 𝑡 Base M × t 𝒫 A ^ ko 𝒫 A 𝑡 Base M = TopOpen M × t TopOpen M
43 42 oveq1d A V 𝒫 A ^ ko 𝒫 A 𝑡 Base M × t 𝒫 A ^ ko 𝒫 A 𝑡 Base M Cn 𝒫 A ^ ko 𝒫 A = TopOpen M × t TopOpen M Cn 𝒫 A ^ ko 𝒫 A
44 37 43 eleqtrd A V + M TopOpen M × t TopOpen M Cn 𝒫 A ^ ko 𝒫 A
45 vex x V
46 vex y V
47 45 46 coex x y V
48 21 47 fnmpoi + M Fn Base M × Base M
49 eqid + 𝑓 M = + 𝑓 M
50 3 20 49 plusfeq + M Fn Base M × Base M + 𝑓 M = + M
51 48 50 ax-mp + 𝑓 M = + M
52 51 eqcomi + M = + 𝑓 M
53 3 52 mndplusf M Mnd + M : Base M × Base M Base M
54 frn + M : Base M × Base M Base M ran + M Base M
55 2 53 54 3syl A V ran + M Base M
56 cnrest2 𝒫 A ^ ko 𝒫 A TopOn 𝒫 A Cn 𝒫 A ran + M Base M Base M 𝒫 A Cn 𝒫 A + M TopOpen M × t TopOpen M Cn 𝒫 A ^ ko 𝒫 A + M TopOpen M × t TopOpen M Cn 𝒫 A ^ ko 𝒫 A 𝑡 Base M
57 26 55 29 56 syl3anc A V + M TopOpen M × t TopOpen M Cn 𝒫 A ^ ko 𝒫 A + M TopOpen M × t TopOpen M Cn 𝒫 A ^ ko 𝒫 A 𝑡 Base M
58 44 57 mpbid A V + M TopOpen M × t TopOpen M Cn 𝒫 A ^ ko 𝒫 A 𝑡 Base M
59 41 oveq2d A V TopOpen M × t TopOpen M Cn 𝒫 A ^ ko 𝒫 A 𝑡 Base M = TopOpen M × t TopOpen M Cn TopOpen M
60 58 59 eleqtrd A V + M TopOpen M × t TopOpen M Cn TopOpen M
61 52 17 istmd M TopMnd M Mnd M TopSp + M TopOpen M × t TopOpen M Cn TopOpen M
62 2 19 60 61 syl3anbrc A V M TopMnd