Metamath Proof Explorer


Theorem elfi2

Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Assertion elfi2 BVAfiBx𝒫BFinA=x

Proof

Step Hyp Ref Expression
1 elex AfiBAV
2 1 a1i BVAfiBAV
3 simpr x𝒫BFinA=xA=x
4 eldifsni x𝒫BFinx
5 4 adantr x𝒫BFinA=xx
6 intex xxV
7 5 6 sylib x𝒫BFinA=xxV
8 3 7 eqeltrd x𝒫BFinA=xAV
9 8 rexlimiva x𝒫BFinA=xAV
10 9 a1i BVx𝒫BFinA=xAV
11 elfi AVBVAfiBx𝒫BFinA=x
12 vprc ¬VV
13 elsni xx=
14 13 inteqd xx=
15 int0 =V
16 14 15 eqtrdi xx=V
17 16 eleq1d xxVVV
18 12 17 mtbiri x¬xV
19 simpr AVBVA=xA=x
20 simpll AVBVA=xAV
21 19 20 eqeltrrd AVBVA=xxV
22 18 21 nsyl3 AVBVA=x¬x
23 22 biantrud AVBVA=xx𝒫BFinx𝒫BFin¬x
24 eldif x𝒫BFinx𝒫BFin¬x
25 23 24 bitr4di AVBVA=xx𝒫BFinx𝒫BFin
26 25 pm5.32da AVBVA=xx𝒫BFinA=xx𝒫BFin
27 ancom x𝒫BFinA=xA=xx𝒫BFin
28 ancom x𝒫BFinA=xA=xx𝒫BFin
29 26 27 28 3bitr4g AVBVx𝒫BFinA=xx𝒫BFinA=x
30 29 rexbidv2 AVBVx𝒫BFinA=xx𝒫BFinA=x
31 11 30 bitrd AVBVAfiBx𝒫BFinA=x
32 31 expcom BVAVAfiBx𝒫BFinA=x
33 2 10 32 pm5.21ndd BVAfiBx𝒫BFinA=x