Description: Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | elicoelioo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 | |
|
2 | simpl2 | |
|
3 | simprl | |
|
4 | elico1 | |
|
5 | 4 | biimpa | |
6 | 5 | simp1d | |
7 | 1 2 3 6 | syl21anc | |
8 | 5 | simp2d | |
9 | 1 2 3 8 | syl21anc | |
10 | 1 2 | jca | |
11 | simprr | |
|
12 | 5 | simp3d | |
13 | 10 3 12 | syl2anc | |
14 | elioo1 | |
|
15 | 14 | notbid | |
16 | 15 | biimpa | |
17 | 3anan32 | |
|
18 | 17 | notbii | |
19 | imnan | |
|
20 | 18 19 | bitr4i | |
21 | 16 20 | sylib | |
22 | 21 | imp | |
23 | 10 11 7 13 22 | syl22anc | |
24 | xeqlelt | |
|
25 | 24 | biimpar | |
26 | 1 7 9 23 25 | syl22anc | |
27 | 26 | ex | |
28 | eqcom | |
|
29 | 27 28 | imbitrdi | |
30 | pm5.6 | |
|
31 | 29 30 | sylib | |
32 | orcom | |
|
33 | 31 32 | imbitrdi | |
34 | simpr | |
|
35 | simpl1 | |
|
36 | 34 35 | eqeltrd | |
37 | 35 | xrleidd | |
38 | 37 34 | breqtrrd | |
39 | simpl3 | |
|
40 | 34 39 | eqbrtrd | |
41 | simpl2 | |
|
42 | 35 41 4 | syl2anc | |
43 | 36 38 40 42 | mpbir3and | |
44 | ioossico | |
|
45 | simpr | |
|
46 | 44 45 | sselid | |
47 | 43 46 | jaodan | |
48 | 47 | ex | |
49 | 33 48 | impbid | |