Metamath Proof Explorer


Theorem elicoelioo

Description: Relate elementhood to a closed-below, open-above interval with elementhood to the same open interval or to its lower bound. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Assertion elicoelioo A*B*A<BCABC=ACAB

Proof

Step Hyp Ref Expression
1 simpl1 A*B*A<BCAB¬CABA*
2 simpl2 A*B*A<BCAB¬CABB*
3 simprl A*B*A<BCAB¬CABCAB
4 elico1 A*B*CABC*ACC<B
5 4 biimpa A*B*CABC*ACC<B
6 5 simp1d A*B*CABC*
7 1 2 3 6 syl21anc A*B*A<BCAB¬CABC*
8 5 simp2d A*B*CABAC
9 1 2 3 8 syl21anc A*B*A<BCAB¬CABAC
10 1 2 jca A*B*A<BCAB¬CABA*B*
11 simprr A*B*A<BCAB¬CAB¬CAB
12 5 simp3d A*B*CABC<B
13 10 3 12 syl2anc A*B*A<BCAB¬CABC<B
14 elioo1 A*B*CABC*A<CC<B
15 14 notbid A*B*¬CAB¬C*A<CC<B
16 15 biimpa A*B*¬CAB¬C*A<CC<B
17 3anan32 C*A<CC<BC*C<BA<C
18 17 notbii ¬C*A<CC<B¬C*C<BA<C
19 imnan C*C<B¬A<C¬C*C<BA<C
20 18 19 bitr4i ¬C*A<CC<BC*C<B¬A<C
21 16 20 sylib A*B*¬CABC*C<B¬A<C
22 21 imp A*B*¬CABC*C<B¬A<C
23 10 11 7 13 22 syl22anc A*B*A<BCAB¬CAB¬A<C
24 xeqlelt A*C*A=CAC¬A<C
25 24 biimpar A*C*AC¬A<CA=C
26 1 7 9 23 25 syl22anc A*B*A<BCAB¬CABA=C
27 26 ex A*B*A<BCAB¬CABA=C
28 eqcom A=CC=A
29 27 28 imbitrdi A*B*A<BCAB¬CABC=A
30 pm5.6 CAB¬CABC=ACABCABC=A
31 29 30 sylib A*B*A<BCABCABC=A
32 orcom CABC=AC=ACAB
33 31 32 imbitrdi A*B*A<BCABC=ACAB
34 simpr A*B*A<BC=AC=A
35 simpl1 A*B*A<BC=AA*
36 34 35 eqeltrd A*B*A<BC=AC*
37 35 xrleidd A*B*A<BC=AAA
38 37 34 breqtrrd A*B*A<BC=AAC
39 simpl3 A*B*A<BC=AA<B
40 34 39 eqbrtrd A*B*A<BC=AC<B
41 simpl2 A*B*A<BC=AB*
42 35 41 4 syl2anc A*B*A<BC=ACABC*ACC<B
43 36 38 40 42 mpbir3and A*B*A<BC=ACAB
44 ioossico ABAB
45 simpr A*B*A<BCABCAB
46 44 45 sselid A*B*A<BCABCAB
47 43 46 jaodan A*B*A<BC=ACABCAB
48 47 ex A*B*A<BC=ACABCAB
49 33 48 impbid A*B*A<BCABC=ACAB