Metamath Proof Explorer


Theorem ellspd

Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015) (Revised by AV, 24-Jun-2019) (Revised by AV, 11-Apr-2024)

Ref Expression
Hypotheses ellspd.n N=LSpanM
ellspd.v B=BaseM
ellspd.k K=BaseS
ellspd.s S=ScalarM
ellspd.z 0˙=0S
ellspd.t ·˙=M
ellspd.f φF:IB
ellspd.m φMLMod
ellspd.i φIV
Assertion ellspd φXNFIfKIfinSupp0˙fX=Mf·˙fF

Proof

Step Hyp Ref Expression
1 ellspd.n N=LSpanM
2 ellspd.v B=BaseM
3 ellspd.k K=BaseS
4 ellspd.s S=ScalarM
5 ellspd.z 0˙=0S
6 ellspd.t ·˙=M
7 ellspd.f φF:IB
8 ellspd.m φMLMod
9 ellspd.i φIV
10 ffn F:IBFFnI
11 fnima FFnIFI=ranF
12 7 10 11 3syl φFI=ranF
13 12 fveq2d φNFI=NranF
14 eqid fBaseSfreeLModIMf·˙fF=fBaseSfreeLModIMf·˙fF
15 14 rnmpt ranfBaseSfreeLModIMf·˙fF=a|fBaseSfreeLModIa=Mf·˙fF
16 eqid SfreeLModI=SfreeLModI
17 eqid BaseSfreeLModI=BaseSfreeLModI
18 4 a1i φS=ScalarM
19 16 17 2 6 14 8 9 18 7 1 frlmup3 φranfBaseSfreeLModIMf·˙fF=NranF
20 15 19 eqtr3id φa|fBaseSfreeLModIa=Mf·˙fF=NranF
21 13 20 eqtr4d φNFI=a|fBaseSfreeLModIa=Mf·˙fF
22 21 eleq2d φXNFIXa|fBaseSfreeLModIa=Mf·˙fF
23 ovex Mf·˙fFV
24 eleq1 X=Mf·˙fFXVMf·˙fFV
25 23 24 mpbiri X=Mf·˙fFXV
26 25 rexlimivw fBaseSfreeLModIX=Mf·˙fFXV
27 eqeq1 a=Xa=Mf·˙fFX=Mf·˙fF
28 27 rexbidv a=XfBaseSfreeLModIa=Mf·˙fFfBaseSfreeLModIX=Mf·˙fF
29 26 28 elab3 Xa|fBaseSfreeLModIa=Mf·˙fFfBaseSfreeLModIX=Mf·˙fF
30 4 fvexi SV
31 eqid aKI|finSupp0˙a=aKI|finSupp0˙a
32 16 3 5 31 frlmbas SVIVaKI|finSupp0˙a=BaseSfreeLModI
33 30 9 32 sylancr φaKI|finSupp0˙a=BaseSfreeLModI
34 33 eqcomd φBaseSfreeLModI=aKI|finSupp0˙a
35 34 rexeqdv φfBaseSfreeLModIX=Mf·˙fFfaKI|finSupp0˙aX=Mf·˙fF
36 breq1 a=ffinSupp0˙afinSupp0˙f
37 36 rexrab faKI|finSupp0˙aX=Mf·˙fFfKIfinSupp0˙fX=Mf·˙fF
38 35 37 bitrdi φfBaseSfreeLModIX=Mf·˙fFfKIfinSupp0˙fX=Mf·˙fF
39 29 38 bitrid φXa|fBaseSfreeLModIa=Mf·˙fFfKIfinSupp0˙fX=Mf·˙fF
40 22 39 bitrd φXNFIfKIfinSupp0˙fX=Mf·˙fF