Metamath Proof Explorer


Theorem elpi1

Description: The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses elpi1.g G=Jπ1Y
elpi1.b B=BaseG
elpi1.1 φJTopOnX
elpi1.2 φYX
Assertion elpi1 φFBfIICnJf0=Yf1=YF=fphJ

Proof

Step Hyp Ref Expression
1 elpi1.g G=Jπ1Y
2 elpi1.b B=BaseG
3 elpi1.1 φJTopOnX
4 elpi1.2 φYX
5 2 a1i φB=BaseG
6 1 3 4 5 pi1bas2 φB=B/phJ
7 6 eleq2d φFBFB/phJ
8 elex FB/phJFV
9 id F=fphJF=fphJ
10 fvex phJV
11 ecexg phJVfphJV
12 10 11 ax-mp fphJV
13 9 12 eqeltrdi F=fphJFV
14 13 rexlimivw fBF=fphJFV
15 elqsg FVFB/phJfBF=fphJ
16 8 14 15 pm5.21nii FB/phJfBF=fphJ
17 1 3 4 5 pi1eluni φfBfIICnJf0=Yf1=Y
18 3anass fIICnJf0=Yf1=YfIICnJf0=Yf1=Y
19 17 18 bitrdi φfBfIICnJf0=Yf1=Y
20 19 anbi1d φfBF=fphJfIICnJf0=Yf1=YF=fphJ
21 anass fIICnJf0=Yf1=YF=fphJfIICnJf0=Yf1=YF=fphJ
22 20 21 bitrdi φfBF=fphJfIICnJf0=Yf1=YF=fphJ
23 22 rexbidv2 φfBF=fphJfIICnJf0=Yf1=YF=fphJ
24 16 23 bitrid φFB/phJfIICnJf0=Yf1=YF=fphJ
25 7 24 bitrd φFBfIICnJf0=Yf1=YF=fphJ