Metamath Proof Explorer


Theorem elpjrn

Description: Reconstruction of the subspace of a projection operator. (Contributed by NM, 24-Apr-2006) (Revised by Mario Carneiro, 19-May-2014) (New usage is discouraged.)

Ref Expression
Assertion elpjrn TranprojranT=x|Tx=x

Proof

Step Hyp Ref Expression
1 elpjch TranprojranTCT=projranT
2 1 simpld TranprojranTC
3 chss ranTCranT
4 2 3 syl TranprojranT
5 4 sseld TranprojxranTx
6 elpjhmop TranprojTHrmOp
7 hmopf THrmOpT:
8 6 7 syl TranprojT:
9 8 ffnd TranprojTFn
10 fvelrnb TFnxranTyTy=x
11 9 10 syl TranprojxranTyTy=x
12 fvco3 T:yTTy=TTy
13 8 12 sylan TranprojyTTy=TTy
14 elpjidm TranprojTT=T
15 14 adantr TranprojyTT=T
16 15 fveq1d TranprojyTTy=Ty
17 13 16 eqtr3d TranprojyTTy=Ty
18 fveq2 Ty=xTTy=Tx
19 id Ty=xTy=x
20 18 19 eqeq12d Ty=xTTy=TyTx=x
21 17 20 syl5ibcom TranprojyTy=xTx=x
22 21 rexlimdva TranprojyTy=xTx=x
23 11 22 sylbid TranprojxranTTx=x
24 5 23 jcad TranprojxranTxTx=x
25 fnfvelrn TFnxTxranT
26 9 25 sylan TranprojxTxranT
27 eleq1 Tx=xTxranTxranT
28 26 27 syl5ibcom TranprojxTx=xxranT
29 28 expimpd TranprojxTx=xxranT
30 24 29 impbid TranprojxranTxTx=x
31 30 eqabdv TranprojranT=x|xTx=x
32 df-rab x|Tx=x=x|xTx=x
33 31 32 eqtr4di TranprojranT=x|Tx=x