Metamath Proof Explorer


Theorem elpt

Description: Elementhood in the bases of a product topology. (Contributed by Mario Carneiro, 3-Feb-2015)

Ref Expression
Hypothesis ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
Assertion elpt SBhhFnAyAhyFywFinyAwhy=FyS=yAhy

Proof

Step Hyp Ref Expression
1 ptbas.1 B=x|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
2 1 eleq2i SBSx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgy
3 simpr gFnAyAgyFyzFinyAzgy=FyS=yAgyS=yAgy
4 ixpexg yAgyVyAgyV
5 fvexd yAgyV
6 4 5 mprg yAgyV
7 3 6 eqeltrdi gFnAyAgyFyzFinyAzgy=FyS=yAgySV
8 7 exlimiv ggFnAyAgyFyzFinyAzgy=FyS=yAgySV
9 eqeq1 x=Sx=yAgyS=yAgy
10 9 anbi2d x=SgFnAyAgyFyzFinyAzgy=Fyx=yAgygFnAyAgyFyzFinyAzgy=FyS=yAgy
11 10 exbidv x=SggFnAyAgyFyzFinyAzgy=Fyx=yAgyggFnAyAgyFyzFinyAzgy=FyS=yAgy
12 8 11 elab3 Sx|ggFnAyAgyFyzFinyAzgy=Fyx=yAgyggFnAyAgyFyzFinyAzgy=FyS=yAgy
13 fneq1 g=hgFnAhFnA
14 fveq1 g=hgy=hy
15 14 eleq1d g=hgyFyhyFy
16 15 ralbidv g=hyAgyFyyAhyFy
17 14 eqeq1d g=hgy=Fyhy=Fy
18 17 rexralbidv g=hzFinyAzgy=FyzFinyAzhy=Fy
19 difeq2 z=wAz=Aw
20 19 raleqdv z=wyAzhy=FyyAwhy=Fy
21 20 cbvrexvw zFinyAzhy=FywFinyAwhy=Fy
22 18 21 bitrdi g=hzFinyAzgy=FywFinyAwhy=Fy
23 13 16 22 3anbi123d g=hgFnAyAgyFyzFinyAzgy=FyhFnAyAhyFywFinyAwhy=Fy
24 14 ixpeq2dv g=hyAgy=yAhy
25 24 eqeq2d g=hS=yAgyS=yAhy
26 23 25 anbi12d g=hgFnAyAgyFyzFinyAzgy=FyS=yAgyhFnAyAhyFywFinyAwhy=FyS=yAhy
27 26 cbvexvw ggFnAyAgyFyzFinyAzgy=FyS=yAgyhhFnAyAhyFywFinyAwhy=FyS=yAhy
28 2 12 27 3bitri SBhhFnAyAhyFywFinyAwhy=FyS=yAhy