Metamath Proof Explorer


Theorem elunop2

Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in AkhiezerGlazman p. 73, and its converse. (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion elunop2 TUniOpTLinOpT:ontoxnormTx=normx

Proof

Step Hyp Ref Expression
1 unoplin TUniOpTLinOp
2 elunop TUniOpT:ontoxyTxihTy=xihy
3 2 simplbi TUniOpT:onto
4 unopnorm TUniOpxnormTx=normx
5 4 ralrimiva TUniOpxnormTx=normx
6 1 3 5 3jca TUniOpTLinOpT:ontoxnormTx=normx
7 eleq1 T=ifTLinOpT:ontoxnormTx=normxTITUniOpifTLinOpT:ontoxnormTx=normxTIUniOp
8 eleq1 T=ifTLinOpT:ontoxnormTx=normxTITLinOpifTLinOpT:ontoxnormTx=normxTILinOp
9 foeq1 T=ifTLinOpT:ontoxnormTx=normxTIT:ontoifTLinOpT:ontoxnormTx=normxTI:onto
10 2fveq3 x=ynormTx=normTy
11 fveq2 x=ynormx=normy
12 10 11 eqeq12d x=ynormTx=normxnormTy=normy
13 12 cbvralvw xnormTx=normxynormTy=normy
14 fveq1 T=ifTLinOpT:ontoxnormTx=normxTITy=ifTLinOpT:ontoxnormTx=normxTIy
15 14 fveqeq2d T=ifTLinOpT:ontoxnormTx=normxTInormTy=normynormifTLinOpT:ontoxnormTx=normxTIy=normy
16 15 ralbidv T=ifTLinOpT:ontoxnormTx=normxTIynormTy=normyynormifTLinOpT:ontoxnormTx=normxTIy=normy
17 13 16 bitrid T=ifTLinOpT:ontoxnormTx=normxTIxnormTx=normxynormifTLinOpT:ontoxnormTx=normxTIy=normy
18 8 9 17 3anbi123d T=ifTLinOpT:ontoxnormTx=normxTITLinOpT:ontoxnormTx=normxifTLinOpT:ontoxnormTx=normxTILinOpifTLinOpT:ontoxnormTx=normxTI:ontoynormifTLinOpT:ontoxnormTx=normxTIy=normy
19 eleq1 I=ifTLinOpT:ontoxnormTx=normxTIILinOpifTLinOpT:ontoxnormTx=normxTILinOp
20 foeq1 I=ifTLinOpT:ontoxnormTx=normxTII:ontoifTLinOpT:ontoxnormTx=normxTI:onto
21 fveq1 I=ifTLinOpT:ontoxnormTx=normxTIIy=ifTLinOpT:ontoxnormTx=normxTIy
22 21 fveqeq2d I=ifTLinOpT:ontoxnormTx=normxTInormIy=normynormifTLinOpT:ontoxnormTx=normxTIy=normy
23 22 ralbidv I=ifTLinOpT:ontoxnormTx=normxTIynormIy=normyynormifTLinOpT:ontoxnormTx=normxTIy=normy
24 19 20 23 3anbi123d I=ifTLinOpT:ontoxnormTx=normxTIILinOpI:ontoynormIy=normyifTLinOpT:ontoxnormTx=normxTILinOpifTLinOpT:ontoxnormTx=normxTI:ontoynormifTLinOpT:ontoxnormTx=normxTIy=normy
25 idlnop ILinOp
26 f1oi I:1-1 onto
27 f1ofo I:1-1 ontoI:onto
28 26 27 ax-mp I:onto
29 fvresi yIy=y
30 29 fveq2d ynormIy=normy
31 30 rgen ynormIy=normy
32 25 28 31 3pm3.2i ILinOpI:ontoynormIy=normy
33 18 24 32 elimhyp ifTLinOpT:ontoxnormTx=normxTILinOpifTLinOpT:ontoxnormTx=normxTI:ontoynormifTLinOpT:ontoxnormTx=normxTIy=normy
34 33 simp1i ifTLinOpT:ontoxnormTx=normxTILinOp
35 33 simp2i ifTLinOpT:ontoxnormTx=normxTI:onto
36 33 simp3i ynormifTLinOpT:ontoxnormTx=normxTIy=normy
37 34 35 36 lnopunii ifTLinOpT:ontoxnormTx=normxTIUniOp
38 7 37 dedth TLinOpT:ontoxnormTx=normxTUniOp
39 6 38 impbii TUniOpTLinOpT:ontoxnormTx=normx