Description: An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in AkhiezerGlazman p. 73, and its converse. (Contributed by NM, 24-Feb-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elunop2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unoplin | |
|
2 | elunop | |
|
3 | 2 | simplbi | |
4 | unopnorm | |
|
5 | 4 | ralrimiva | |
6 | 1 3 5 | 3jca | |
7 | eleq1 | |
|
8 | eleq1 | |
|
9 | foeq1 | |
|
10 | 2fveq3 | |
|
11 | fveq2 | |
|
12 | 10 11 | eqeq12d | |
13 | 12 | cbvralvw | |
14 | fveq1 | |
|
15 | 14 | fveqeq2d | |
16 | 15 | ralbidv | |
17 | 13 16 | bitrid | |
18 | 8 9 17 | 3anbi123d | |
19 | eleq1 | |
|
20 | foeq1 | |
|
21 | fveq1 | |
|
22 | 21 | fveqeq2d | |
23 | 22 | ralbidv | |
24 | 19 20 23 | 3anbi123d | |
25 | idlnop | |
|
26 | f1oi | |
|
27 | f1ofo | |
|
28 | 26 27 | ax-mp | |
29 | fvresi | |
|
30 | 29 | fveq2d | |
31 | 30 | rgen | |
32 | 25 28 31 | 3pm3.2i | |
33 | 18 24 32 | elimhyp | |
34 | 33 | simp1i | |
35 | 33 | simp2i | |
36 | 33 | simp3i | |
37 | 34 35 36 | lnopunii | |
38 | 7 37 | dedth | |
39 | 6 38 | impbii | |