Metamath Proof Explorer


Theorem elwwlks2ons3im

Description: A walk as word of length 2 between two vertices is a length 3 string and its second symbol is a vertex. (Contributed by AV, 14-Mar-2022)

Ref Expression
Hypothesis wwlks2onv.v V=VtxG
Assertion elwwlks2ons3im WA2WWalksNOnGCW=⟨“AW1C”⟩W1V

Proof

Step Hyp Ref Expression
1 wwlks2onv.v V=VtxG
2 1 wwlksonvtx WA2WWalksNOnGCAVCV
3 wwlknon WA2WWalksNOnGCW2WWalksNGW0=AW2=C
4 wwlknbp1 W2WWalksNG20WWordVtxGW=2+1
5 2p1e3 2+1=3
6 5 eqeq2i W=2+1W=3
7 1ex 1V
8 7 tpid2 1012
9 fzo0to3tp 0..^3=012
10 8 9 eleqtrri 10..^3
11 oveq2 W=30..^W=0..^3
12 10 11 eleqtrrid W=310..^W
13 wrdsymbcl WWordVtxG10..^WW1VtxG
14 12 13 sylan2 WWordVtxGW=3W1VtxG
15 14 3ad2ant1 WWordVtxGW=3W0=AW2=CAVCVW1VtxG
16 simpl1r WWordVtxGW=3W0=AW2=CAVCVW1VtxGW=3
17 simpl W0=AW2=CW0=A
18 eqidd W0=AW2=CW1=W1
19 simpr W0=AW2=CW2=C
20 17 18 19 3jca W0=AW2=CW0=AW1=W1W2=C
21 20 3ad2ant2 WWordVtxGW=3W0=AW2=CAVCVW0=AW1=W1W2=C
22 21 adantr WWordVtxGW=3W0=AW2=CAVCVW1VtxGW0=AW1=W1W2=C
23 1 eqcomi VtxG=V
24 23 wrdeqi WordVtxG=WordV
25 24 eleq2i WWordVtxGWWordV
26 25 biimpi WWordVtxGWWordV
27 26 adantr WWordVtxGW=3WWordV
28 27 3ad2ant1 WWordVtxGW=3W0=AW2=CAVCVWWordV
29 28 adantr WWordVtxGW=3W0=AW2=CAVCVW1VtxGWWordV
30 simpl3l WWordVtxGW=3W0=AW2=CAVCVW1VtxGAV
31 23 eleq2i W1VtxGW1V
32 31 biimpi W1VtxGW1V
33 32 adantl WWordVtxGW=3W0=AW2=CAVCVW1VtxGW1V
34 simpl3r WWordVtxGW=3W0=AW2=CAVCVW1VtxGCV
35 eqwrds3 WWordVAVW1VCVW=⟨“AW1C”⟩W=3W0=AW1=W1W2=C
36 29 30 33 34 35 syl13anc WWordVtxGW=3W0=AW2=CAVCVW1VtxGW=⟨“AW1C”⟩W=3W0=AW1=W1W2=C
37 16 22 36 mpbir2and WWordVtxGW=3W0=AW2=CAVCVW1VtxGW=⟨“AW1C”⟩
38 37 33 jca WWordVtxGW=3W0=AW2=CAVCVW1VtxGW=⟨“AW1C”⟩W1V
39 15 38 mpdan WWordVtxGW=3W0=AW2=CAVCVW=⟨“AW1C”⟩W1V
40 39 3exp WWordVtxGW=3W0=AW2=CAVCVW=⟨“AW1C”⟩W1V
41 6 40 sylan2b WWordVtxGW=2+1W0=AW2=CAVCVW=⟨“AW1C”⟩W1V
42 41 3adant1 20WWordVtxGW=2+1W0=AW2=CAVCVW=⟨“AW1C”⟩W1V
43 4 42 syl W2WWalksNGW0=AW2=CAVCVW=⟨“AW1C”⟩W1V
44 43 3impib W2WWalksNGW0=AW2=CAVCVW=⟨“AW1C”⟩W1V
45 3 44 sylbi WA2WWalksNOnGCAVCVW=⟨“AW1C”⟩W1V
46 2 45 mpd WA2WWalksNOnGCW=⟨“AW1C”⟩W1V