| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxp |
|
| 2 |
|
sneq |
|
| 3 |
2
|
rneqd |
|
| 4 |
3
|
unieqd |
|
| 5 |
|
vex |
|
| 6 |
|
vex |
|
| 7 |
5 6
|
op2nda |
|
| 8 |
4 7
|
eqtr2di |
|
| 9 |
8
|
pm4.71ri |
|
| 10 |
9
|
anbi1i |
|
| 11 |
|
anass |
|
| 12 |
10 11
|
bitri |
|
| 13 |
12
|
exbii |
|
| 14 |
|
snex |
|
| 15 |
14
|
rnex |
|
| 16 |
15
|
uniex |
|
| 17 |
|
opeq2 |
|
| 18 |
17
|
eqeq2d |
|
| 19 |
|
eleq1 |
|
| 20 |
19
|
anbi2d |
|
| 21 |
18 20
|
anbi12d |
|
| 22 |
16 21
|
ceqsexv |
|
| 23 |
13 22
|
bitri |
|
| 24 |
|
inteq |
|
| 25 |
24
|
inteqd |
|
| 26 |
5 16
|
op1stb |
|
| 27 |
25 26
|
eqtr2di |
|
| 28 |
27
|
pm4.71ri |
|
| 29 |
28
|
anbi1i |
|
| 30 |
|
anass |
|
| 31 |
23 29 30
|
3bitri |
|
| 32 |
31
|
exbii |
|
| 33 |
|
eqvisset |
|
| 34 |
33
|
adantr |
|
| 35 |
34
|
exlimiv |
|
| 36 |
|
elex |
|
| 37 |
36
|
ad2antrl |
|
| 38 |
|
opeq1 |
|
| 39 |
38
|
eqeq2d |
|
| 40 |
|
eleq1 |
|
| 41 |
40
|
anbi1d |
|
| 42 |
39 41
|
anbi12d |
|
| 43 |
42
|
ceqsexgv |
|
| 44 |
35 37 43
|
pm5.21nii |
|
| 45 |
1 32 44
|
3bitri |
|