Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | elz2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 | |
|
2 | nn0p1nn | |
|
3 | 2 | adantl | |
4 | 1nn | |
|
5 | 4 | a1i | |
6 | recn | |
|
7 | 6 | adantr | |
8 | ax-1cn | |
|
9 | pncan | |
|
10 | 7 8 9 | sylancl | |
11 | 10 | eqcomd | |
12 | rspceov | |
|
13 | 3 5 11 12 | syl3anc | |
14 | 4 | a1i | |
15 | 6 | adantr | |
16 | negsub | |
|
17 | 8 15 16 | sylancr | |
18 | simpr | |
|
19 | nnnn0addcl | |
|
20 | 4 18 19 | sylancr | |
21 | 17 20 | eqeltrrd | |
22 | nncan | |
|
23 | 8 15 22 | sylancr | |
24 | 23 | eqcomd | |
25 | rspceov | |
|
26 | 14 21 24 25 | syl3anc | |
27 | 13 26 | jaodan | |
28 | nnre | |
|
29 | nnre | |
|
30 | resubcl | |
|
31 | 28 29 30 | syl2an | |
32 | letric | |
|
33 | 29 28 32 | syl2anr | |
34 | nnnn0 | |
|
35 | nnnn0 | |
|
36 | nn0sub | |
|
37 | 34 35 36 | syl2anr | |
38 | nn0sub | |
|
39 | 35 34 38 | syl2an | |
40 | nncn | |
|
41 | nncn | |
|
42 | negsubdi2 | |
|
43 | 40 41 42 | syl2an | |
44 | 43 | eleq1d | |
45 | 39 44 | bitr4d | |
46 | 37 45 | orbi12d | |
47 | 33 46 | mpbid | |
48 | 31 47 | jca | |
49 | eleq1 | |
|
50 | eleq1 | |
|
51 | negeq | |
|
52 | 51 | eleq1d | |
53 | 50 52 | orbi12d | |
54 | 49 53 | anbi12d | |
55 | 48 54 | syl5ibrcom | |
56 | 55 | rexlimivv | |
57 | 27 56 | impbii | |
58 | 1 57 | bitri | |