Step |
Hyp |
Ref |
Expression |
1 |
|
esumpad.1 |
|
2 |
|
esumpad.2 |
|
3 |
|
esumpad.3 |
|
4 |
|
esumpad.4 |
|
5 |
|
nfv |
|
6 |
|
nfcv |
|
7 |
|
nfcv |
|
8 |
|
elex |
|
9 |
1 8
|
syl |
|
10 |
2
|
difexd |
|
11 |
|
disjdif |
|
12 |
11
|
a1i |
|
13 |
|
difssd |
|
14 |
13
|
sselda |
|
15 |
|
0e0iccpnf |
|
16 |
4 15
|
eqeltrdi |
|
17 |
14 16
|
syldan |
|
18 |
5 6 7 9 10 12 3 17
|
esumsplit |
|
19 |
|
undif2 |
|
20 |
|
esumeq1 |
|
21 |
19 20
|
ax-mp |
|
22 |
21
|
a1i |
|
23 |
14 4
|
syldan |
|
24 |
23
|
ralrimiva |
|
25 |
5 24
|
esumeq2d |
|
26 |
7
|
esum0 |
|
27 |
10 26
|
syl |
|
28 |
25 27
|
eqtrd |
|
29 |
28
|
oveq2d |
|
30 |
|
iccssxr |
|
31 |
3
|
ralrimiva |
|
32 |
6
|
esumcl |
|
33 |
1 31 32
|
syl2anc |
|
34 |
30 33
|
sselid |
|
35 |
|
xaddid1 |
|
36 |
34 35
|
syl |
|
37 |
29 36
|
eqtrd |
|
38 |
18 22 37
|
3eqtr3d |
|