Metamath Proof Explorer


Theorem esumpad

Description: Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020)

Ref Expression
Hypotheses esumpad.1 φ A V
esumpad.2 φ B W
esumpad.3 φ k A C 0 +∞
esumpad.4 φ k B C = 0
Assertion esumpad φ * k A B C = * k A C

Proof

Step Hyp Ref Expression
1 esumpad.1 φ A V
2 esumpad.2 φ B W
3 esumpad.3 φ k A C 0 +∞
4 esumpad.4 φ k B C = 0
5 nfv k φ
6 nfcv _ k A
7 nfcv _ k B A
8 elex A V A V
9 1 8 syl φ A V
10 2 difexd φ B A V
11 disjdif A B A =
12 11 a1i φ A B A =
13 difssd φ B A B
14 13 sselda φ k B A k B
15 0e0iccpnf 0 0 +∞
16 4 15 eqeltrdi φ k B C 0 +∞
17 14 16 syldan φ k B A C 0 +∞
18 5 6 7 9 10 12 3 17 esumsplit φ * k A B A C = * k A C + 𝑒 * k B A C
19 undif2 A B A = A B
20 esumeq1 A B A = A B * k A B A C = * k A B C
21 19 20 ax-mp * k A B A C = * k A B C
22 21 a1i φ * k A B A C = * k A B C
23 14 4 syldan φ k B A C = 0
24 23 ralrimiva φ k B A C = 0
25 5 24 esumeq2d φ * k B A C = * k B A 0
26 7 esum0 B A V * k B A 0 = 0
27 10 26 syl φ * k B A 0 = 0
28 25 27 eqtrd φ * k B A C = 0
29 28 oveq2d φ * k A C + 𝑒 * k B A C = * k A C + 𝑒 0
30 iccssxr 0 +∞ *
31 3 ralrimiva φ k A C 0 +∞
32 6 esumcl A V k A C 0 +∞ * k A C 0 +∞
33 1 31 32 syl2anc φ * k A C 0 +∞
34 30 33 sselid φ * k A C *
35 xaddid1 * k A C * * k A C + 𝑒 0 = * k A C
36 34 35 syl φ * k A C + 𝑒 0 = * k A C
37 29 36 eqtrd φ * k A C + 𝑒 * k B A C = * k A C
38 18 22 37 3eqtr3d φ * k A B C = * k A C