Metamath Proof Explorer


Theorem esumpad

Description: Extend an extended sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 31-May-2020)

Ref Expression
Hypotheses esumpad.1 φAV
esumpad.2 φBW
esumpad.3 φkAC0+∞
esumpad.4 φkBC=0
Assertion esumpad φ*kABC=*kAC

Proof

Step Hyp Ref Expression
1 esumpad.1 φAV
2 esumpad.2 φBW
3 esumpad.3 φkAC0+∞
4 esumpad.4 φkBC=0
5 nfv kφ
6 nfcv _kA
7 nfcv _kBA
8 elex AVAV
9 1 8 syl φAV
10 2 difexd φBAV
11 disjdif ABA=
12 11 a1i φABA=
13 difssd φBAB
14 13 sselda φkBAkB
15 0e0iccpnf 00+∞
16 4 15 eqeltrdi φkBC0+∞
17 14 16 syldan φkBAC0+∞
18 5 6 7 9 10 12 3 17 esumsplit φ*kABAC=*kAC+𝑒*kBAC
19 undif2 ABA=AB
20 esumeq1 ABA=AB*kABAC=*kABC
21 19 20 ax-mp *kABAC=*kABC
22 21 a1i φ*kABAC=*kABC
23 14 4 syldan φkBAC=0
24 23 ralrimiva φkBAC=0
25 5 24 esumeq2d φ*kBAC=*kBA0
26 7 esum0 BAV*kBA0=0
27 10 26 syl φ*kBA0=0
28 25 27 eqtrd φ*kBAC=0
29 28 oveq2d φ*kAC+𝑒*kBAC=*kAC+𝑒0
30 iccssxr 0+∞*
31 3 ralrimiva φkAC0+∞
32 6 esumcl AVkAC0+∞*kAC0+∞
33 1 31 32 syl2anc φ*kAC0+∞
34 30 33 sselid φ*kAC*
35 xaddrid *kAC**kAC+𝑒0=*kAC
36 34 35 syl φ*kAC+𝑒0=*kAC
37 29 36 eqtrd φ*kAC+𝑒*kBAC=*kAC
38 18 22 37 3eqtr3d φ*kABC=*kAC