Metamath Proof Explorer


Theorem evlmulval

Description: Polynomial evaluation builder for multiplication. (Contributed by SN, 18-Feb-2025)

Ref Expression
Hypotheses evlmulval.q Q=IevalS
evlmulval.p P=ImPolyS
evlmulval.k K=BaseS
evlmulval.b B=BaseP
evlmulval.g ˙=P
evlmulval.f ·˙=S
evlmulval.i φIZ
evlmulval.s φSCRing
evlmulval.a φAKI
evlmulval.m φMBQMA=V
evlmulval.n φNBQNA=W
Assertion evlmulval φM˙NBQM˙NA=V·˙W

Proof

Step Hyp Ref Expression
1 evlmulval.q Q=IevalS
2 evlmulval.p P=ImPolyS
3 evlmulval.k K=BaseS
4 evlmulval.b B=BaseP
5 evlmulval.g ˙=P
6 evlmulval.f ·˙=S
7 evlmulval.i φIZ
8 evlmulval.s φSCRing
9 evlmulval.a φAKI
10 evlmulval.m φMBQMA=V
11 evlmulval.n φNBQNA=W
12 eqid S𝑠KI=S𝑠KI
13 1 3 2 12 evlrhm IZSCRingQPRingHomS𝑠KI
14 7 8 13 syl2anc φQPRingHomS𝑠KI
15 rhmrcl1 QPRingHomS𝑠KIPRing
16 14 15 syl φPRing
17 10 simpld φMB
18 11 simpld φNB
19 4 5 16 17 18 ringcld φM˙NB
20 eqid S𝑠KI=S𝑠KI
21 4 5 20 rhmmul QPRingHomS𝑠KIMBNBQM˙N=QMS𝑠KIQN
22 14 17 18 21 syl3anc φQM˙N=QMS𝑠KIQN
23 eqid BaseS𝑠KI=BaseS𝑠KI
24 ovexd φKIV
25 4 23 rhmf QPRingHomS𝑠KIQ:BBaseS𝑠KI
26 14 25 syl φQ:BBaseS𝑠KI
27 26 17 ffvelcdmd φQMBaseS𝑠KI
28 26 18 ffvelcdmd φQNBaseS𝑠KI
29 12 23 8 24 27 28 6 20 pwsmulrval φQMS𝑠KIQN=QM·˙fQN
30 22 29 eqtrd φQM˙N=QM·˙fQN
31 30 fveq1d φQM˙NA=QM·˙fQNA
32 12 3 23 8 24 27 pwselbas φQM:KIK
33 32 ffnd φQMFnKI
34 12 3 23 8 24 28 pwselbas φQN:KIK
35 34 ffnd φQNFnKI
36 fnfvof QMFnKIQNFnKIKIVAKIQM·˙fQNA=QMA·˙QNA
37 33 35 24 9 36 syl22anc φQM·˙fQNA=QMA·˙QNA
38 10 simprd φQMA=V
39 11 simprd φQNA=W
40 38 39 oveq12d φQMA·˙QNA=V·˙W
41 31 37 40 3eqtrd φQM˙NA=V·˙W
42 19 41 jca φM˙NBQM˙NA=V·˙W