Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014) (Revised by Mario Carneiro, 9-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | expcllem.1 | |
|
expcllem.2 | |
||
expcllem.3 | |
||
expcl2lem.4 | |
||
Assertion | expcl2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expcllem.1 | |
|
2 | expcllem.2 | |
|
3 | expcllem.3 | |
|
4 | expcl2lem.4 | |
|
5 | elznn0nn | |
|
6 | 1 2 3 | expcllem | |
7 | 6 | ex | |
8 | 7 | adantr | |
9 | simpll | |
|
10 | 1 9 | sselid | |
11 | simprl | |
|
12 | 11 | recnd | |
13 | nnnn0 | |
|
14 | 13 | ad2antll | |
15 | expneg2 | |
|
16 | 10 12 14 15 | syl3anc | |
17 | difss | |
|
18 | simpl | |
|
19 | eldifsn | |
|
20 | 18 19 | sylibr | |
21 | 17 1 | sstri | |
22 | 17 | sseli | |
23 | 17 | sseli | |
24 | 22 23 2 | syl2an | |
25 | eldifsn | |
|
26 | 1 | sseli | |
27 | 26 | anim1i | |
28 | 25 27 | sylbi | |
29 | eldifsn | |
|
30 | 1 | sseli | |
31 | 30 | anim1i | |
32 | 29 31 | sylbi | |
33 | mulne0 | |
|
34 | 28 32 33 | syl2an | |
35 | eldifsn | |
|
36 | 24 34 35 | sylanbrc | |
37 | ax-1ne0 | |
|
38 | eldifsn | |
|
39 | 3 37 38 | mpbir2an | |
40 | 21 36 39 | expcllem | |
41 | 20 14 40 | syl2anc | |
42 | 17 41 | sselid | |
43 | eldifsn | |
|
44 | 41 43 | sylib | |
45 | 44 | simprd | |
46 | neeq1 | |
|
47 | oveq2 | |
|
48 | 47 | eleq1d | |
49 | 46 48 | imbi12d | |
50 | 4 | ex | |
51 | 49 50 | vtoclga | |
52 | 42 45 51 | sylc | |
53 | 16 52 | eqeltrd | |
54 | 53 | ex | |
55 | 8 54 | jaod | |
56 | 5 55 | biimtrid | |
57 | 56 | 3impia | |