Metamath Proof Explorer


Theorem expcl2lem

Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014) (Revised by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses expcllem.1 F
expcllem.2 xFyFxyF
expcllem.3 1F
expcl2lem.4 xFx01xF
Assertion expcl2lem AFA0BABF

Proof

Step Hyp Ref Expression
1 expcllem.1 F
2 expcllem.2 xFyFxyF
3 expcllem.3 1F
4 expcl2lem.4 xFx01xF
5 elznn0nn BB0BB
6 1 2 3 expcllem AFB0ABF
7 6 ex AFB0ABF
8 7 adantr AFA0B0ABF
9 simpll AFA0BBAF
10 1 9 sselid AFA0BBA
11 simprl AFA0BBB
12 11 recnd AFA0BBB
13 nnnn0 BB0
14 13 ad2antll AFA0BBB0
15 expneg2 ABB0AB=1AB
16 10 12 14 15 syl3anc AFA0BBAB=1AB
17 difss F0F
18 simpl AFA0BBAFA0
19 eldifsn AF0AFA0
20 18 19 sylibr AFA0BBAF0
21 17 1 sstri F0
22 17 sseli xF0xF
23 17 sseli yF0yF
24 22 23 2 syl2an xF0yF0xyF
25 eldifsn xF0xFx0
26 1 sseli xFx
27 26 anim1i xFx0xx0
28 25 27 sylbi xF0xx0
29 eldifsn yF0yFy0
30 1 sseli yFy
31 30 anim1i yFy0yy0
32 29 31 sylbi yF0yy0
33 mulne0 xx0yy0xy0
34 28 32 33 syl2an xF0yF0xy0
35 eldifsn xyF0xyFxy0
36 24 34 35 sylanbrc xF0yF0xyF0
37 ax-1ne0 10
38 eldifsn 1F01F10
39 3 37 38 mpbir2an 1F0
40 21 36 39 expcllem AF0B0ABF0
41 20 14 40 syl2anc AFA0BBABF0
42 17 41 sselid AFA0BBABF
43 eldifsn ABF0ABFAB0
44 41 43 sylib AFA0BBABFAB0
45 44 simprd AFA0BBAB0
46 neeq1 x=ABx0AB0
47 oveq2 x=AB1x=1AB
48 47 eleq1d x=AB1xF1ABF
49 46 48 imbi12d x=ABx01xFAB01ABF
50 4 ex xFx01xF
51 49 50 vtoclga ABFAB01ABF
52 42 45 51 sylc AFA0BB1ABF
53 16 52 eqeltrd AFA0BBABF
54 53 ex AFA0BBABF
55 8 54 jaod AFA0B0BBABF
56 5 55 biimtrid AFA0BABF
57 56 3impia AFA0BABF