Metamath Proof Explorer


Theorem expcl2lem

Description: Lemma for proving integer exponentiation closure laws. (Contributed by Mario Carneiro, 4-Jun-2014) (Revised by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses expcllem.1 F
expcllem.2 x F y F x y F
expcllem.3 1 F
expcl2lem.4 x F x 0 1 x F
Assertion expcl2lem A F A 0 B A B F

Proof

Step Hyp Ref Expression
1 expcllem.1 F
2 expcllem.2 x F y F x y F
3 expcllem.3 1 F
4 expcl2lem.4 x F x 0 1 x F
5 elznn0nn B B 0 B B
6 1 2 3 expcllem A F B 0 A B F
7 6 ex A F B 0 A B F
8 7 adantr A F A 0 B 0 A B F
9 simpll A F A 0 B B A F
10 1 9 sseldi A F A 0 B B A
11 simprl A F A 0 B B B
12 11 recnd A F A 0 B B B
13 nnnn0 B B 0
14 13 ad2antll A F A 0 B B B 0
15 expneg2 A B B 0 A B = 1 A B
16 10 12 14 15 syl3anc A F A 0 B B A B = 1 A B
17 difss F 0 F
18 simpl A F A 0 B B A F A 0
19 eldifsn A F 0 A F A 0
20 18 19 sylibr A F A 0 B B A F 0
21 17 1 sstri F 0
22 17 sseli x F 0 x F
23 17 sseli y F 0 y F
24 22 23 2 syl2an x F 0 y F 0 x y F
25 eldifsn x F 0 x F x 0
26 1 sseli x F x
27 26 anim1i x F x 0 x x 0
28 25 27 sylbi x F 0 x x 0
29 eldifsn y F 0 y F y 0
30 1 sseli y F y
31 30 anim1i y F y 0 y y 0
32 29 31 sylbi y F 0 y y 0
33 mulne0 x x 0 y y 0 x y 0
34 28 32 33 syl2an x F 0 y F 0 x y 0
35 eldifsn x y F 0 x y F x y 0
36 24 34 35 sylanbrc x F 0 y F 0 x y F 0
37 ax-1ne0 1 0
38 eldifsn 1 F 0 1 F 1 0
39 3 37 38 mpbir2an 1 F 0
40 21 36 39 expcllem A F 0 B 0 A B F 0
41 20 14 40 syl2anc A F A 0 B B A B F 0
42 17 41 sseldi A F A 0 B B A B F
43 eldifsn A B F 0 A B F A B 0
44 41 43 sylib A F A 0 B B A B F A B 0
45 44 simprd A F A 0 B B A B 0
46 neeq1 x = A B x 0 A B 0
47 oveq2 x = A B 1 x = 1 A B
48 47 eleq1d x = A B 1 x F 1 A B F
49 46 48 imbi12d x = A B x 0 1 x F A B 0 1 A B F
50 4 ex x F x 0 1 x F
51 49 50 vtoclga A B F A B 0 1 A B F
52 42 45 51 sylc A F A 0 B B 1 A B F
53 16 52 eqeltrd A F A 0 B B A B F
54 53 ex A F A 0 B B A B F
55 8 54 jaod A F A 0 B 0 B B A B F
56 5 55 syl5bi A F A 0 B A B F
57 56 3impia A F A 0 B A B F