| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1ofn |
|
| 2 |
1
|
ad2antrr |
|
| 3 |
|
f1ofn |
|
| 4 |
3
|
ad2antlr |
|
| 5 |
|
1onn |
|
| 6 |
|
simplrr |
|
| 7 |
|
simplrl |
|
| 8 |
|
df-2o |
|
| 9 |
7 8
|
breqtrdi |
|
| 10 |
6 9
|
eqbrtrd |
|
| 11 |
|
simpr |
|
| 12 |
|
dif1ennn |
|
| 13 |
5 10 11 12
|
mp3an2i |
|
| 14 |
|
euen1b |
|
| 15 |
|
eumo |
|
| 16 |
14 15
|
sylbi |
|
| 17 |
13 16
|
syl |
|
| 18 |
|
f1omvdmvd |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
|
eleq2 |
|
| 22 |
21
|
ad2antll |
|
| 23 |
|
difeq1 |
|
| 24 |
23
|
eleq2d |
|
| 25 |
24
|
ad2antll |
|
| 26 |
20 22 25
|
3imtr4d |
|
| 27 |
26
|
imp |
|
| 28 |
|
f1omvdmvd |
|
| 29 |
28
|
ad4ant24 |
|
| 30 |
|
fvex |
|
| 31 |
|
fvex |
|
| 32 |
30 31
|
pm3.2i |
|
| 33 |
|
eleq1 |
|
| 34 |
|
eleq1 |
|
| 35 |
33 34
|
moi |
|
| 36 |
32 35
|
mp3an1 |
|
| 37 |
17 27 29 36
|
syl12anc |
|
| 38 |
37
|
adantlr |
|
| 39 |
|
simplrr |
|
| 40 |
39
|
eleq2d |
|
| 41 |
|
fnelnfp |
|
| 42 |
2 41
|
sylan |
|
| 43 |
40 42
|
bitrd |
|
| 44 |
43
|
necon2bbid |
|
| 45 |
44
|
biimpar |
|
| 46 |
|
fnelnfp |
|
| 47 |
4 46
|
sylan |
|
| 48 |
47
|
necon2bbid |
|
| 49 |
48
|
biimpar |
|
| 50 |
45 49
|
eqtr4d |
|
| 51 |
38 50
|
pm2.61dan |
|
| 52 |
2 4 51
|
eqfnfvd |
|