Metamath Proof Explorer


Theorem f1oun2prg

Description: A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017)

Ref Expression
Assertion f1oun2prg A V B W C X D Y A B A C A D B C B D C D 0 A 1 B 2 C 3 D : 0 1 2 3 1-1 onto A B C D

Proof

Step Hyp Ref Expression
1 simpl A V B W A V
2 0z 0
3 1 2 jctil A V B W 0 A V
4 3 ad2antrr A V B W C X D Y A B A C A D B C B D C D 0 A V
5 simpr A V B W B W
6 1z 1
7 5 6 jctil A V B W 1 B W
8 7 ad2antrr A V B W C X D Y A B A C A D B C B D C D 1 B W
9 4 8 jca A V B W C X D Y A B A C A D B C B D C D 0 A V 1 B W
10 id A B A B
11 10 3ad2ant1 A B A C A D A B
12 0ne1 0 1
13 11 12 jctil A B A C A D 0 1 A B
14 13 adantr A B A C A D B C B D C D 0 1 A B
15 14 adantl A V B W C X D Y A B A C A D B C B D C D 0 1 A B
16 f1oprg 0 A V 1 B W 0 1 A B 0 A 1 B : 0 1 1-1 onto A B
17 9 15 16 sylc A V B W C X D Y A B A C A D B C B D C D 0 A 1 B : 0 1 1-1 onto A B
18 simpl C X D Y C X
19 2nn 2
20 18 19 jctil C X D Y 2 C X
21 20 adantl A V B W C X D Y 2 C X
22 simpr C X D Y D Y
23 3nn 3
24 22 23 jctil C X D Y 3 D Y
25 24 adantl A V B W C X D Y 3 D Y
26 21 25 jca A V B W C X D Y 2 C X 3 D Y
27 26 adantr A V B W C X D Y A B A C A D B C B D C D 2 C X 3 D Y
28 id C D C D
29 28 3ad2ant3 B C B D C D C D
30 2re 2
31 2lt3 2 < 3
32 30 31 ltneii 2 3
33 29 32 jctil B C B D C D 2 3 C D
34 33 adantl A B A C A D B C B D C D 2 3 C D
35 34 adantl A V B W C X D Y A B A C A D B C B D C D 2 3 C D
36 f1oprg 2 C X 3 D Y 2 3 C D 2 C 3 D : 2 3 1-1 onto C D
37 27 35 36 sylc A V B W C X D Y A B A C A D B C B D C D 2 C 3 D : 2 3 1-1 onto C D
38 disjsn2 A C A C =
39 38 3ad2ant2 A B A C A D A C =
40 disjsn2 B C B C =
41 40 3ad2ant1 B C B D C D B C =
42 39 41 anim12i A B A C A D B C B D C D A C = B C =
43 42 adantl A V B W C X D Y A B A C A D B C B D C D A C = B C =
44 df-pr A B = A B
45 44 ineq1i A B C = A B C
46 45 eqeq1i A B C = A B C =
47 undisj1 A C = B C = A B C =
48 46 47 bitr4i A B C = A C = B C =
49 43 48 sylibr A V B W C X D Y A B A C A D B C B D C D A B C =
50 disjsn2 A D A D =
51 50 3ad2ant3 A B A C A D A D =
52 disjsn2 B D B D =
53 52 3ad2ant2 B C B D C D B D =
54 51 53 anim12i A B A C A D B C B D C D A D = B D =
55 54 adantl A V B W C X D Y A B A C A D B C B D C D A D = B D =
56 44 ineq1i A B D = A B D
57 56 eqeq1i A B D = A B D =
58 undisj1 A D = B D = A B D =
59 57 58 bitr4i A B D = A D = B D =
60 55 59 sylibr A V B W C X D Y A B A C A D B C B D C D A B D =
61 49 60 jca A V B W C X D Y A B A C A D B C B D C D A B C = A B D =
62 undisj2 A B C = A B D = A B C D =
63 df-pr C D = C D
64 63 eqcomi C D = C D
65 64 ineq2i A B C D = A B C D
66 65 eqeq1i A B C D = A B C D =
67 62 66 bitri A B C = A B D = A B C D =
68 61 67 sylib A V B W C X D Y A B A C A D B C B D C D A B C D =
69 df-pr 0 1 = 0 1
70 69 eqcomi 0 1 = 0 1
71 70 ineq1i 0 1 2 = 0 1 2
72 0ne2 0 2
73 disjsn2 0 2 0 2 =
74 72 73 ax-mp 0 2 =
75 1ne2 1 2
76 disjsn2 1 2 1 2 =
77 75 76 ax-mp 1 2 =
78 74 77 pm3.2i 0 2 = 1 2 =
79 undisj1 0 2 = 1 2 = 0 1 2 =
80 78 79 mpbi 0 1 2 =
81 71 80 eqtr3i 0 1 2 =
82 70 ineq1i 0 1 3 = 0 1 3
83 3ne0 3 0
84 83 necomi 0 3
85 disjsn2 0 3 0 3 =
86 84 85 ax-mp 0 3 =
87 1re 1
88 1lt3 1 < 3
89 87 88 ltneii 1 3
90 disjsn2 1 3 1 3 =
91 89 90 ax-mp 1 3 =
92 86 91 pm3.2i 0 3 = 1 3 =
93 undisj1 0 3 = 1 3 = 0 1 3 =
94 92 93 mpbi 0 1 3 =
95 82 94 eqtr3i 0 1 3 =
96 81 95 pm3.2i 0 1 2 = 0 1 3 =
97 undisj2 0 1 2 = 0 1 3 = 0 1 2 3 =
98 df-pr 2 3 = 2 3
99 98 eqcomi 2 3 = 2 3
100 99 ineq2i 0 1 2 3 = 0 1 2 3
101 100 eqeq1i 0 1 2 3 = 0 1 2 3 =
102 97 101 bitri 0 1 2 = 0 1 3 = 0 1 2 3 =
103 96 102 mpbi 0 1 2 3 =
104 68 103 jctil A V B W C X D Y A B A C A D B C B D C D 0 1 2 3 = A B C D =
105 f1oun 0 A 1 B : 0 1 1-1 onto A B 2 C 3 D : 2 3 1-1 onto C D 0 1 2 3 = A B C D = 0 A 1 B 2 C 3 D : 0 1 2 3 1-1 onto A B C D
106 17 37 104 105 syl21anc A V B W C X D Y A B A C A D B C B D C D 0 A 1 B 2 C 3 D : 0 1 2 3 1-1 onto A B C D
107 106 ex A V B W C X D Y A B A C A D B C B D C D 0 A 1 B 2 C 3 D : 0 1 2 3 1-1 onto A B C D