Metamath Proof Explorer


Theorem f1oun2prg

Description: A union of unordered pairs of ordered pairs with different elements is a one-to-one onto function. (Contributed by Alexander van der Vekens, 14-Aug-2017)

Ref Expression
Assertion f1oun2prg AVBWCXDYABACADBCBDCD0A1B2C3D:01231-1 ontoABCD

Proof

Step Hyp Ref Expression
1 simpl AVBWAV
2 0z 0
3 1 2 jctil AVBW0AV
4 3 ad2antrr AVBWCXDYABACADBCBDCD0AV
5 simpr AVBWBW
6 1z 1
7 5 6 jctil AVBW1BW
8 7 ad2antrr AVBWCXDYABACADBCBDCD1BW
9 4 8 jca AVBWCXDYABACADBCBDCD0AV1BW
10 id ABAB
11 10 3ad2ant1 ABACADAB
12 0ne1 01
13 11 12 jctil ABACAD01AB
14 13 adantr ABACADBCBDCD01AB
15 14 adantl AVBWCXDYABACADBCBDCD01AB
16 f1oprg 0AV1BW01AB0A1B:011-1 ontoAB
17 9 15 16 sylc AVBWCXDYABACADBCBDCD0A1B:011-1 ontoAB
18 simpl CXDYCX
19 2nn 2
20 18 19 jctil CXDY2CX
21 20 adantl AVBWCXDY2CX
22 simpr CXDYDY
23 3nn 3
24 22 23 jctil CXDY3DY
25 24 adantl AVBWCXDY3DY
26 21 25 jca AVBWCXDY2CX3DY
27 26 adantr AVBWCXDYABACADBCBDCD2CX3DY
28 id CDCD
29 28 3ad2ant3 BCBDCDCD
30 2re 2
31 2lt3 2<3
32 30 31 ltneii 23
33 29 32 jctil BCBDCD23CD
34 33 adantl ABACADBCBDCD23CD
35 34 adantl AVBWCXDYABACADBCBDCD23CD
36 f1oprg 2CX3DY23CD2C3D:231-1 ontoCD
37 27 35 36 sylc AVBWCXDYABACADBCBDCD2C3D:231-1 ontoCD
38 disjsn2 ACAC=
39 38 3ad2ant2 ABACADAC=
40 disjsn2 BCBC=
41 40 3ad2ant1 BCBDCDBC=
42 39 41 anim12i ABACADBCBDCDAC=BC=
43 42 adantl AVBWCXDYABACADBCBDCDAC=BC=
44 df-pr AB=AB
45 44 ineq1i ABC=ABC
46 45 eqeq1i ABC=ABC=
47 undisj1 AC=BC=ABC=
48 46 47 bitr4i ABC=AC=BC=
49 43 48 sylibr AVBWCXDYABACADBCBDCDABC=
50 disjsn2 ADAD=
51 50 3ad2ant3 ABACADAD=
52 disjsn2 BDBD=
53 52 3ad2ant2 BCBDCDBD=
54 51 53 anim12i ABACADBCBDCDAD=BD=
55 54 adantl AVBWCXDYABACADBCBDCDAD=BD=
56 44 ineq1i ABD=ABD
57 56 eqeq1i ABD=ABD=
58 undisj1 AD=BD=ABD=
59 57 58 bitr4i ABD=AD=BD=
60 55 59 sylibr AVBWCXDYABACADBCBDCDABD=
61 49 60 jca AVBWCXDYABACADBCBDCDABC=ABD=
62 undisj2 ABC=ABD=ABCD=
63 df-pr CD=CD
64 63 eqcomi CD=CD
65 64 ineq2i ABCD=ABCD
66 65 eqeq1i ABCD=ABCD=
67 62 66 bitri ABC=ABD=ABCD=
68 61 67 sylib AVBWCXDYABACADBCBDCDABCD=
69 df-pr 01=01
70 69 eqcomi 01=01
71 70 ineq1i 012=012
72 0ne2 02
73 disjsn2 0202=
74 72 73 ax-mp 02=
75 1ne2 12
76 disjsn2 1212=
77 75 76 ax-mp 12=
78 74 77 pm3.2i 02=12=
79 undisj1 02=12=012=
80 78 79 mpbi 012=
81 71 80 eqtr3i 012=
82 70 ineq1i 013=013
83 3ne0 30
84 83 necomi 03
85 disjsn2 0303=
86 84 85 ax-mp 03=
87 1re 1
88 1lt3 1<3
89 87 88 ltneii 13
90 disjsn2 1313=
91 89 90 ax-mp 13=
92 86 91 pm3.2i 03=13=
93 undisj1 03=13=013=
94 92 93 mpbi 013=
95 82 94 eqtr3i 013=
96 81 95 pm3.2i 012=013=
97 undisj2 012=013=0123=
98 df-pr 23=23
99 98 eqcomi 23=23
100 99 ineq2i 0123=0123
101 100 eqeq1i 0123=0123=
102 97 101 bitri 012=013=0123=
103 96 102 mpbi 0123=
104 68 103 jctil AVBWCXDYABACADBCBDCD0123=ABCD=
105 f1oun 0A1B:011-1 ontoAB2C3D:231-1 ontoCD0123=ABCD=0A1B2C3D:01231-1 ontoABCD
106 17 37 104 105 syl21anc AVBWCXDYABACADBCBDCD0A1B2C3D:01231-1 ontoABCD
107 106 ex AVBWCXDYABACADBCBDCD0A1B2C3D:01231-1 ontoABCD