| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1rp |
|
| 2 |
1
|
a1i |
|
| 3 |
|
nnrp |
|
| 4 |
3
|
rpreccld |
|
| 5 |
4
|
adantl |
|
| 6 |
2 5
|
rpaddcld |
|
| 7 |
6
|
rpcnd |
|
| 8 |
|
simpl |
|
| 9 |
7 8
|
expp1d |
|
| 10 |
1
|
a1i |
|
| 11 |
10 4
|
rpaddcld |
|
| 12 |
|
nn0z |
|
| 13 |
|
rpexpcl |
|
| 14 |
11 12 13
|
syl2anr |
|
| 15 |
14
|
rpcnd |
|
| 16 |
|
1cnd |
|
| 17 |
|
nn0nndivcl |
|
| 18 |
17
|
recnd |
|
| 19 |
16 18
|
addcomd |
|
| 20 |
|
nn0ge0div |
|
| 21 |
17 20
|
ge0p1rpd |
|
| 22 |
19 21
|
eqeltrd |
|
| 23 |
22
|
rpcnd |
|
| 24 |
22
|
rpne0d |
|
| 25 |
15 23 24
|
divcan1d |
|
| 26 |
25
|
oveq1d |
|
| 27 |
14 22
|
rpdivcld |
|
| 28 |
27
|
rpcnd |
|
| 29 |
28 23 7
|
mulassd |
|
| 30 |
9 26 29
|
3eqtr2d |
|
| 31 |
30
|
oveq1d |
|
| 32 |
22 6
|
rpmulcld |
|
| 33 |
32
|
rpcnd |
|
| 34 |
|
nn0p1nn |
|
| 35 |
34
|
nnrpd |
|
| 36 |
35
|
adantr |
|
| 37 |
3
|
adantl |
|
| 38 |
36 37
|
rpdivcld |
|
| 39 |
2 38
|
rpaddcld |
|
| 40 |
39
|
rpcnd |
|
| 41 |
39
|
rpne0d |
|
| 42 |
28 33 40 41
|
divassd |
|
| 43 |
31 42
|
eqtrd |
|