Metamath Proof Explorer


Theorem facndiv

Description: No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005)

Ref Expression
Assertion facndiv M0N1<NNM¬M!+1N

Proof

Step Hyp Ref Expression
1 nnre NN
2 recnz N1<N¬1N
3 1 2 sylan N1<N¬1N
4 3 ad2ant2lr M0N1<NNM¬1N
5 facdiv M0NNMM!N
6 5 3expa M0NNMM!N
7 6 nnzd M0NNMM!N
8 7 adantrl M0N1<NNMM!N
9 zsubcl M!+1NM!NM!+1NM!N
10 9 ex M!+1NM!NM!+1NM!N
11 8 10 syl5com M0N1<NNMM!+1NM!+1NM!N
12 faccl M0M!
13 12 nncnd M0M!
14 peano2cn M!M!+1
15 13 14 syl M0M!+1
16 15 ad2antrr M0N1<NNMM!+1
17 13 ad2antrr M0N1<NNMM!
18 nncn NN
19 nnne0 NN0
20 18 19 jca NNN0
21 20 ad2antlr M0N1<NNMNN0
22 divsubdir M!+1M!NN0M!+1-M!N=M!+1NM!N
23 16 17 21 22 syl3anc M0N1<NNMM!+1-M!N=M!+1NM!N
24 ax-1cn 1
25 pncan2 M!1M!+1-M!=1
26 13 24 25 sylancl M0M!+1-M!=1
27 26 oveq1d M0M!+1-M!N=1N
28 27 ad2antrr M0N1<NNMM!+1-M!N=1N
29 23 28 eqtr3d M0N1<NNMM!+1NM!N=1N
30 29 eleq1d M0N1<NNMM!+1NM!N1N
31 11 30 sylibd M0N1<NNMM!+1N1N
32 4 31 mtod M0N1<NNM¬M!+1N