Description: The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | fallfacfwd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cn | |
|
2 | nnnn0 | |
|
3 | fallfacval | |
|
4 | 1 2 3 | syl2an | |
5 | 0p1e1 | |
|
6 | 5 | oveq1i | |
7 | 6 | prodeq1i | |
8 | 7 | oveq2i | |
9 | nnm1nn0 | |
|
10 | 9 | adantl | |
11 | nn0uz | |
|
12 | 10 11 | eleqtrdi | |
13 | simpll | |
|
14 | elfzelz | |
|
15 | 14 | adantl | |
16 | peano2zm | |
|
17 | 15 16 | syl | |
18 | 17 | zcnd | |
19 | 13 18 | subcld | |
20 | oveq1 | |
|
21 | df-neg | |
|
22 | 20 21 | eqtr4di | |
23 | 22 | oveq2d | |
24 | 12 19 23 | fprod1p | |
25 | fallfacval2 | |
|
26 | 9 25 | sylan2 | |
27 | 26 | oveq2d | |
28 | 8 24 27 | 3eqtr4a | |
29 | elfznn0 | |
|
30 | 29 | adantl | |
31 | 30 | nn0cnd | |
32 | 1cnd | |
|
33 | 13 31 32 | subsub3d | |
34 | 33 | prodeq2dv | |
35 | simpl | |
|
36 | 1cnd | |
|
37 | 35 36 | subnegd | |
38 | 37 | oveq1d | |
39 | 28 34 38 | 3eqtr3d | |
40 | 4 39 | eqtrd | |
41 | simpr | |
|
42 | 41 | nncnd | |
43 | 42 36 | npcand | |
44 | 43 | oveq2d | |
45 | fallfacp1 | |
|
46 | 9 45 | sylan2 | |
47 | 44 46 | eqtr3d | |
48 | 40 47 | oveq12d | |
49 | fallfaccl | |
|
50 | 9 49 | sylan2 | |
51 | 10 | nn0cnd | |
52 | 35 51 | subcld | |
53 | 50 52 | mulcomd | |
54 | 53 | oveq2d | |
55 | 1 | adantr | |
56 | 55 52 50 | subdird | |
57 | 35 36 51 | pnncand | |
58 | 36 42 | pncan3d | |
59 | 57 58 | eqtrd | |
60 | 59 | oveq1d | |
61 | 54 56 60 | 3eqtr2d | |
62 | 48 61 | eqtrd | |