| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2cn |
|
| 2 |
|
nnnn0 |
|
| 3 |
|
fallfacval |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
0p1e1 |
|
| 6 |
5
|
oveq1i |
|
| 7 |
6
|
prodeq1i |
|
| 8 |
7
|
oveq2i |
|
| 9 |
|
nnm1nn0 |
|
| 10 |
9
|
adantl |
|
| 11 |
|
nn0uz |
|
| 12 |
10 11
|
eleqtrdi |
|
| 13 |
|
simpll |
|
| 14 |
|
elfzelz |
|
| 15 |
14
|
adantl |
|
| 16 |
|
peano2zm |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
zcnd |
|
| 19 |
13 18
|
subcld |
|
| 20 |
|
oveq1 |
|
| 21 |
|
df-neg |
|
| 22 |
20 21
|
eqtr4di |
|
| 23 |
22
|
oveq2d |
|
| 24 |
12 19 23
|
fprod1p |
|
| 25 |
|
fallfacval2 |
|
| 26 |
9 25
|
sylan2 |
|
| 27 |
26
|
oveq2d |
|
| 28 |
8 24 27
|
3eqtr4a |
|
| 29 |
|
elfznn0 |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
nn0cnd |
|
| 32 |
|
1cnd |
|
| 33 |
13 31 32
|
subsub3d |
|
| 34 |
33
|
prodeq2dv |
|
| 35 |
|
simpl |
|
| 36 |
|
1cnd |
|
| 37 |
35 36
|
subnegd |
|
| 38 |
37
|
oveq1d |
|
| 39 |
28 34 38
|
3eqtr3d |
|
| 40 |
4 39
|
eqtrd |
|
| 41 |
|
simpr |
|
| 42 |
41
|
nncnd |
|
| 43 |
42 36
|
npcand |
|
| 44 |
43
|
oveq2d |
|
| 45 |
|
fallfacp1 |
|
| 46 |
9 45
|
sylan2 |
|
| 47 |
44 46
|
eqtr3d |
|
| 48 |
40 47
|
oveq12d |
|
| 49 |
|
fallfaccl |
|
| 50 |
9 49
|
sylan2 |
|
| 51 |
10
|
nn0cnd |
|
| 52 |
35 51
|
subcld |
|
| 53 |
50 52
|
mulcomd |
|
| 54 |
53
|
oveq2d |
|
| 55 |
1
|
adantr |
|
| 56 |
55 52 50
|
subdird |
|
| 57 |
35 36 51
|
pnncand |
|
| 58 |
36 42
|
pncan3d |
|
| 59 |
57 58
|
eqtrd |
|
| 60 |
59
|
oveq1d |
|
| 61 |
54 56 60
|
3eqtr2d |
|
| 62 |
48 61
|
eqtrd |
|