Metamath Proof Explorer


Theorem fallfacfwd

Description: The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018)

Ref Expression
Assertion fallfacfwd ANA+1N_AN_=NAN1_

Proof

Step Hyp Ref Expression
1 peano2cn AA+1
2 nnnn0 NN0
3 fallfacval A+1N0A+1N_=k=0N1A+1-k
4 1 2 3 syl2an ANA+1N_=k=0N1A+1-k
5 0p1e1 0+1=1
6 5 oveq1i 0+1N1=1N1
7 6 prodeq1i k=0+1N1Ak1=k=1N1Ak1
8 7 oveq2i A-1k=0+1N1Ak1=A-1k=1N1Ak1
9 nnm1nn0 NN10
10 9 adantl ANN10
11 nn0uz 0=0
12 10 11 eleqtrdi ANN10
13 simpll ANk0N1A
14 elfzelz k0N1k
15 14 adantl ANk0N1k
16 peano2zm kk1
17 15 16 syl ANk0N1k1
18 17 zcnd ANk0N1k1
19 13 18 subcld ANk0N1Ak1
20 oveq1 k=0k1=01
21 df-neg 1=01
22 20 21 eqtr4di k=0k1=1
23 22 oveq2d k=0Ak1=A-1
24 12 19 23 fprod1p ANk=0N1Ak1=A-1k=0+1N1Ak1
25 fallfacval2 AN10AN1_=k=1N1Ak1
26 9 25 sylan2 ANAN1_=k=1N1Ak1
27 26 oveq2d ANA-1AN1_=A-1k=1N1Ak1
28 8 24 27 3eqtr4a ANk=0N1Ak1=A-1AN1_
29 elfznn0 k0N1k0
30 29 adantl ANk0N1k0
31 30 nn0cnd ANk0N1k
32 1cnd ANk0N11
33 13 31 32 subsub3d ANk0N1Ak1=A+1-k
34 33 prodeq2dv ANk=0N1Ak1=k=0N1A+1-k
35 simpl ANA
36 1cnd AN1
37 35 36 subnegd ANA-1=A+1
38 37 oveq1d ANA-1AN1_=A+1AN1_
39 28 34 38 3eqtr3d ANk=0N1A+1-k=A+1AN1_
40 4 39 eqtrd ANA+1N_=A+1AN1_
41 simpr ANN
42 41 nncnd ANN
43 42 36 npcand ANN-1+1=N
44 43 oveq2d ANAN-1+1_=AN_
45 fallfacp1 AN10AN-1+1_=AN1_AN1
46 9 45 sylan2 ANAN-1+1_=AN1_AN1
47 44 46 eqtr3d ANAN_=AN1_AN1
48 40 47 oveq12d ANA+1N_AN_=A+1AN1_AN1_AN1
49 fallfaccl AN10AN1_
50 9 49 sylan2 ANAN1_
51 10 nn0cnd ANN1
52 35 51 subcld ANAN1
53 50 52 mulcomd ANAN1_AN1=AN1AN1_
54 53 oveq2d ANA+1AN1_AN1_AN1=A+1AN1_AN1AN1_
55 1 adantr ANA+1
56 55 52 50 subdird ANA+1-AN1AN1_=A+1AN1_AN1AN1_
57 35 36 51 pnncand ANA+1-AN1=1+N-1
58 36 42 pncan3d AN1+N-1=N
59 57 58 eqtrd ANA+1-AN1=N
60 59 oveq1d ANA+1-AN1AN1_=NAN1_
61 54 56 60 3eqtr2d ANA+1AN1_AN1_AN1=NAN1_
62 48 61 eqtrd ANA+1N_AN_=NAN1_