Metamath Proof Explorer


Theorem fcores

Description: Every composite function ( G o. F ) can be written as composition of restrictions of the composed functions (to their minimum domains). (Contributed by GL and AV, 17-Sep-2024)

Ref Expression
Hypotheses fcores.f φ F : A B
fcores.e E = ran F C
fcores.p P = F -1 C
fcores.x X = F P
fcores.g φ G : C D
fcores.y Y = G E
Assertion fcores φ G F = Y X

Proof

Step Hyp Ref Expression
1 fcores.f φ F : A B
2 fcores.e E = ran F C
3 fcores.p P = F -1 C
4 fcores.x X = F P
5 fcores.g φ G : C D
6 fcores.y Y = G E
7 1 ffund φ Fun F
8 fcof G : C D Fun F G F : F -1 C D
9 5 7 8 syl2anc φ G F : F -1 C D
10 9 ffnd φ G F Fn F -1 C
11 3 fneq2i G F Fn P G F Fn F -1 C
12 10 11 sylibr φ G F Fn P
13 1 2 3 4 5 6 fcoreslem4 φ Y X Fn P
14 4 fveq1i X x = F P x
15 simpr φ x P x P
16 15 fvresd φ x P F P x = F x
17 14 16 syl5eq φ x P X x = F x
18 17 fveq2d φ x P Y X x = Y F x
19 6 fveq1i Y F x = G E F x
20 cnvimass F -1 C dom F
21 3 20 eqsstri P dom F
22 21 sseli x P x dom F
23 fvelrn Fun F x dom F F x ran F
24 7 22 23 syl2an φ x P F x ran F
25 3 eleq2i x P x F -1 C
26 25 biimpi x P x F -1 C
27 fvimacnvi Fun F x F -1 C F x C
28 7 26 27 syl2an φ x P F x C
29 24 28 elind φ x P F x ran F C
30 29 2 eleqtrrdi φ x P F x E
31 30 fvresd φ x P G E F x = G F x
32 19 31 syl5eq φ x P Y F x = G F x
33 18 32 eqtrd φ x P Y X x = G F x
34 1 2 3 4 fcoreslem3 φ X : P onto E
35 fof X : P onto E X : P E
36 34 35 syl φ X : P E
37 36 adantr φ x P X : P E
38 37 15 fvco3d φ x P Y X x = Y X x
39 1 adantr φ x P F : A B
40 21 a1i φ P dom F
41 40 sselda φ x P x dom F
42 1 fdmd φ dom F = A
43 42 eqcomd φ A = dom F
44 43 eleq2d φ x A x dom F
45 44 adantr φ x P x A x dom F
46 41 45 mpbird φ x P x A
47 39 46 fvco3d φ x P G F x = G F x
48 33 38 47 3eqtr4rd φ x P G F x = Y X x
49 12 13 48 eqfnfvd φ G F = Y X