Metamath Proof Explorer


Theorem fdifsuppconst

Description: A function is a zero constant outside of its support. (Contributed by Thierry Arnoux, 22-Jun-2024)

Ref Expression
Hypothesis fdifsuppconst.1 A = dom F supp Z F
Assertion fdifsuppconst Fun F F V Z W F A = A × Z

Proof

Step Hyp Ref Expression
1 fdifsuppconst.1 A = dom F supp Z F
2 funfn Fun F F Fn dom F
3 2 biimpi Fun F F Fn dom F
4 3 ad2antrr Fun F F V Z W F Fn dom F
5 difssd Fun F F V Z W dom F supp Z F dom F
6 1 5 eqsstrid Fun F F V Z W A dom F
7 4 6 fnssresd Fun F F V Z W F A Fn A
8 fnconstg Z W A × Z Fn A
9 8 adantl Fun F F V Z W A × Z Fn A
10 4 adantr Fun F F V Z W x A F Fn dom F
11 dmexg F V dom F V
12 11 ad3antlr Fun F F V Z W x A dom F V
13 simplr Fun F F V Z W x A Z W
14 1 eleq2i x A x dom F supp Z F
15 14 biimpi x A x dom F supp Z F
16 15 adantl Fun F F V Z W x A x dom F supp Z F
17 10 12 13 16 fvdifsupp Fun F F V Z W x A F x = Z
18 simpr Fun F F V Z W x A x A
19 18 fvresd Fun F F V Z W x A F A x = F x
20 fvconst2g Z W x A A × Z x = Z
21 20 adantll Fun F F V Z W x A A × Z x = Z
22 17 19 21 3eqtr4d Fun F F V Z W x A F A x = A × Z x
23 7 9 22 eqfnfvd Fun F F V Z W F A = A × Z
24 23 3impa Fun F F V Z W F A = A × Z