Metamath Proof Explorer


Theorem fiiuncl

Description: If a set is closed under the union of two sets, then it is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fiiuncl.xph xφ
fiiuncl.b φxABD
fiiuncl.un φyDzDyzD
fiiuncl.a φAFin
fiiuncl.n0 φA
Assertion fiiuncl φxABD

Proof

Step Hyp Ref Expression
1 fiiuncl.xph xφ
2 fiiuncl.b φxABD
3 fiiuncl.un φyDzDyzD
4 fiiuncl.a φAFin
5 fiiuncl.n0 φA
6 neeq1 v=v
7 iuneq1 v=xvB=xB
8 7 eleq1d v=xvBDxBD
9 6 8 imbi12d v=vxvBDxBD
10 neeq1 v=wvw
11 iuneq1 v=wxvB=xwB
12 11 eleq1d v=wxvBDxwBD
13 10 12 imbi12d v=wvxvBDwxwBD
14 neeq1 v=wuvwu
15 iuneq1 v=wuxvB=xwuB
16 15 eleq1d v=wuxvBDxwuBD
17 14 16 imbi12d v=wuvxvBDwuxwuBD
18 neeq1 v=AvA
19 iuneq1 v=AxvB=xAB
20 19 eleq1d v=AxvBDxABD
21 18 20 imbi12d v=AvxvBDAxABD
22 neirr ¬
23 22 pm2.21i xBD
24 23 a1i φxBD
25 iunxun xwuB=xwBxuB
26 nfcsb1v _xu/xB
27 vex uV
28 csbeq1a x=uB=u/xB
29 26 27 28 iunxsnf xuB=u/xB
30 29 uneq2i xwBxuB=xwBu/xB
31 25 30 eqtri xwuB=xwBu/xB
32 iuneq1 w=xwB=xB
33 0iun xB=
34 33 a1i w=xB=
35 32 34 eqtrd w=xwB=
36 35 uneq1d w=xwBu/xB=u/xB
37 0un u/xB=u/xB
38 unidm u/xBu/xB=u/xB
39 37 38 eqtr4i u/xB=u/xBu/xB
40 39 a1i w=u/xB=u/xBu/xB
41 36 40 eqtrd w=xwBu/xB=u/xBu/xB
42 41 adantl φuAww=xwBu/xB=u/xBu/xB
43 simpl φuAwφ
44 eldifi uAwuA
45 44 adantl φuAwuA
46 nfv xuA
47 1 46 nfan xφuA
48 nfcv _xD
49 26 48 nfel xu/xBD
50 47 49 nfim xφuAu/xBD
51 eleq1 x=uxAuA
52 51 anbi2d x=uφxAφuA
53 28 eleq1d x=uBDu/xBD
54 52 53 imbi12d x=uφxABDφuAu/xBD
55 50 54 2 chvarfv φuAu/xBD
56 38 55 eqeltrid φuAu/xBu/xBD
57 43 45 56 syl2anc φuAwu/xBu/xBD
58 57 adantr φuAww=u/xBu/xBD
59 42 58 eqeltrd φuAww=xwBu/xBD
60 59 adantlr φuAwwxwBDw=xwBu/xBD
61 simplll φuAwwxwBD¬w=φ
62 44 ad3antlr φuAwwxwBD¬w=uA
63 neqne ¬w=w
64 63 adantl wxwBD¬w=w
65 simpl wxwBD¬w=wxwBD
66 64 65 mpd wxwBD¬w=xwBD
67 66 adantll φuAwwxwBD¬w=xwBD
68 55 3adant3 φuAxwBDu/xBD
69 simp3 φuAxwBDxwBD
70 simp1 φuAxwBDφ
71 70 69 68 3jca φuAxwBDφxwBDu/xBD
72 eleq1 z=u/xBzDu/xBD
73 72 3anbi3d z=u/xBφxwBDzDφxwBDu/xBD
74 uneq2 z=u/xBxwBz=xwBu/xB
75 74 eleq1d z=u/xBxwBzDxwBu/xBD
76 73 75 imbi12d z=u/xBφxwBDzDxwBzDφxwBDu/xBDxwBu/xBD
77 76 imbi2d z=u/xBxwBDφxwBDzDxwBzDxwBDφxwBDu/xBDxwBu/xBD
78 eleq1 y=xwByDxwBD
79 78 3anbi2d y=xwBφyDzDφxwBDzD
80 uneq1 y=xwByz=xwBz
81 80 eleq1d y=xwByzDxwBzD
82 79 81 imbi12d y=xwBφyDzDyzDφxwBDzDxwBzD
83 82 3 vtoclg xwBDφxwBDzDxwBzD
84 77 83 vtoclg u/xBDxwBDφxwBDu/xBDxwBu/xBD
85 68 69 71 84 syl3c φuAxwBDxwBu/xBD
86 61 62 67 85 syl3anc φuAwwxwBD¬w=xwBu/xBD
87 60 86 pm2.61dan φuAwwxwBDxwBu/xBD
88 31 87 eqeltrid φuAwwxwBDxwuBD
89 88 a1d φuAwwxwBDwuxwuBD
90 89 ex φuAwwxwBDwuxwuBD
91 90 adantrl φwAuAwwxwBDwuxwuBD
92 9 13 17 21 24 91 4 findcard2d φAxABD
93 5 92 mpd φxABD