Metamath Proof Explorer


Theorem fin23lem31

Description: Lemma for fin23 . The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a U=seqωiω,uViftiu=utiurant
fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
fin23lem.b P=vω|ranUtv
fin23lem.c Q=wωιxP|xPw
fin23lem.d R=wωιxωP|xωPw
fin23lem.e Z=ifPFintRzPtzranUQ
Assertion fin23lem31 t:ω1-1VGFrantGranZrant

Proof

Step Hyp Ref Expression
1 fin23lem.a U=seqωiω,uViftiu=utiurant
2 fin23lem17.f F=g|a𝒫gωxωasucxaxranarana
3 fin23lem.b P=vω|ranUtv
4 fin23lem.c Q=wωιxP|xPw
5 fin23lem.d R=wωιxωP|xωPw
6 fin23lem.e Z=ifPFintRzPtzranUQ
7 2 ssfin3ds GFrantGrantF
8 1 2 3 4 5 6 fin23lem29 ranZrant
9 8 a1i t:ω1-1VrantFranZrant
10 1 2 fin23lem21 rantFt:ω1-1VranU
11 10 ancoms t:ω1-1VrantFranU
12 n0 ranUaaranU
13 11 12 sylib t:ω1-1VrantFaaranU
14 1 fnseqom UFnω
15 fndm UFnωdomU=ω
16 14 15 ax-mp domU=ω
17 peano1 ω
18 17 ne0ii ω
19 16 18 eqnetri domU
20 dm0rn0 domU=ranU=
21 20 necon3bii domUranU
22 19 21 mpbi ranU
23 intssuni ranUranUranU
24 22 23 ax-mp ranUranU
25 1 fin23lem16 ranU=rant
26 24 25 sseqtri ranUrant
27 26 sseli aranUarant
28 f1fun t:ω1-1VFunt
29 28 adantr t:ω1-1VrantFFunt
30 1 2 3 4 5 6 fin23lem30 FuntranZranU=
31 29 30 syl t:ω1-1VrantFranZranU=
32 disj ranZranU=aranZ¬aranU
33 31 32 sylib t:ω1-1VrantFaranZ¬aranU
34 rsp aranZ¬aranUaranZ¬aranU
35 33 34 syl t:ω1-1VrantFaranZ¬aranU
36 35 con2d t:ω1-1VrantFaranU¬aranZ
37 36 imp t:ω1-1VrantFaranU¬aranZ
38 nelne1 arant¬aranZrantranZ
39 27 37 38 syl2an2 t:ω1-1VrantFaranUrantranZ
40 39 necomd t:ω1-1VrantFaranUranZrant
41 13 40 exlimddv t:ω1-1VrantFranZrant
42 df-pss ranZrantranZrantranZrant
43 9 41 42 sylanbrc t:ω1-1VrantFranZrant
44 7 43 sylan2 t:ω1-1VGFrantGranZrant
45 44 3impb t:ω1-1VGFrantGranZrant