Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | fleqceilz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flid | |
|
2 | ceilid | |
|
3 | 1 2 | eqtr4d | |
4 | eqeq1 | |
|
5 | 4 | adantr | |
6 | ceilidz | |
|
7 | eqcom | |
|
8 | 6 7 | bitrdi | |
9 | 8 | biimprd | |
10 | 9 | adantl | |
11 | 5 10 | sylbid | |
12 | 11 | ex | |
13 | flle | |
|
14 | df-ne | |
|
15 | necom | |
|
16 | reflcl | |
|
17 | id | |
|
18 | 16 17 | ltlend | |
19 | breq1 | |
|
20 | 19 | adantl | |
21 | ceilge | |
|
22 | ceilcl | |
|
23 | 22 | zred | |
24 | 17 23 | lenltd | |
25 | pm2.21 | |
|
26 | 24 25 | syl6bi | |
27 | 21 26 | mpd | |
28 | 27 | adantr | |
29 | 20 28 | sylbid | |
30 | 29 | ex | |
31 | 30 | com23 | |
32 | 18 31 | sylbird | |
33 | 32 | expd | |
34 | 33 | com3r | |
35 | 15 34 | sylbi | |
36 | 14 35 | sylbir | |
37 | 13 36 | mpdi | |
38 | 12 37 | pm2.61i | |
39 | 3 38 | impbid2 | |