Metamath Proof Explorer


Theorem fleqceilz

Description: A real number is an integer iff its floor equals its ceiling. (Contributed by AV, 30-Nov-2018)

Ref Expression
Assertion fleqceilz AAA=A

Proof

Step Hyp Ref Expression
1 flid AA=A
2 ceilid AA=A
3 1 2 eqtr4d AA=A
4 eqeq1 A=AA=AA=A
5 4 adantr A=AAA=AA=A
6 ceilidz AAA=A
7 eqcom A=AA=A
8 6 7 bitrdi AAA=A
9 8 biimprd AA=AA
10 9 adantl A=AAA=AA
11 5 10 sylbid A=AAA=AA
12 11 ex A=AAA=AA
13 flle AAA
14 df-ne AA¬A=A
15 necom AAAA
16 reflcl AA
17 id AA
18 16 17 ltlend AA<AAAAA
19 breq1 A=AA<AA<A
20 19 adantl AA=AA<AA<A
21 ceilge AAA
22 ceilcl AA
23 22 zred AA
24 17 23 lenltd AAA¬A<A
25 pm2.21 ¬A<AA<AA
26 24 25 syl6bi AAAA<AA
27 21 26 mpd AA<AA
28 27 adantr AA=AA<AA
29 20 28 sylbid AA=AA<AA
30 29 ex AA=AA<AA
31 30 com23 AA<AA=AA
32 18 31 sylbird AAAAAA=AA
33 32 expd AAAAAA=AA
34 33 com3r AAAAAA=AA
35 15 34 sylbi AAAAAA=AA
36 14 35 sylbir ¬A=AAAAA=AA
37 13 36 mpdi ¬A=AAA=AA
38 12 37 pm2.61i AA=AA
39 3 38 impbid2 AAA=A