Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009) (Revised by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | flffbas.l | |
|
Assertion | flffbas | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flffbas.l | |
|
2 | fgcl | |
|
3 | 1 2 | eqeltrid | |
4 | isflf | |
|
5 | 3 4 | syl3an2 | |
6 | 1 | eleq2i | |
7 | elfg | |
|
8 | 7 | 3ad2ant2 | |
9 | sstr2 | |
|
10 | imass2 | |
|
11 | 9 10 | syl11 | |
12 | 11 | adantl | |
13 | 12 | reximdv | |
14 | 13 | ex | |
15 | 14 | com23 | |
16 | 15 | adantld | |
17 | 8 16 | sylbid | |
18 | 17 | adantr | |
19 | 6 18 | biimtrid | |
20 | 19 | rexlimdv | |
21 | ssfg | |
|
22 | 21 1 | sseqtrrdi | |
23 | 22 | sselda | |
24 | 23 | 3ad2antl2 | |
25 | 24 | ad2ant2r | |
26 | simprr | |
|
27 | imaeq2 | |
|
28 | 27 | sseq1d | |
29 | 28 | rspcev | |
30 | 25 26 29 | syl2anc | |
31 | 30 | rexlimdvaa | |
32 | 20 31 | impbid | |
33 | 32 | imbi2d | |
34 | 33 | ralbidv | |
35 | 34 | pm5.32da | |
36 | 5 35 | bitrd | |